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ABSTRACT: This study focuses on some of the research efforts from the U.S. Army Engineer Research and
Development Center (ERDC) in developing more accurate procedures for the estimation of the load-carrying
capacity of in-service fixed bridges, in particular, of reinforced concrete T-beam bridges. This bridge type represents
a stumbling block for U.S. Army field engineers whenever they are faced with unknown important parameters for
load capacity estimation such as the amount and location of the flexural reinforcement in the T-beam girder cross
sections.

Research personnel from the ERDC in collaboration with personnel from the Virginia Polytechnic Institute and
State University worked in the development of a procedure that is potentially more accurate, can be quickly
executed in the field, and is relatively easy to use by military engineers. The evaluation procedure presented herein
provides a methodology for transition between the quantity of flexural reinforcement in a reinforced concrete T-
beam and the member’s actual moment of inertia.

This report is aimed at the evaluation of the accuracy of selected, effective moment of inertia models as a
component in the proposed evaluation procedure. The accuracy of the selected models is evaluated using laboratory
test data generated from an experimental program detailed herein, which included the load testing of full-scale
reinforced concrete T-beams. The test specimens were subjected to a closely spaced, tandem-axle load
configuration, which represents a typical load configuration in military equipment.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.
DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.
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Preface

This report describes a research study developed by the Virginia Polytechnic
Institute and State University (Virginia Tech) in collaboration with the
U.S. Army Engineer Research and Development Center (ERDC) for the selection
of an appropriate effective of inertia model to accurately define the stiffness
behavior of reinforced concrete members. This model will have a key role as
part of a load capacity evaluation procedure for reinforced concrete T-beam
bridges that is currently being developed at the ERDC. The study was part of the
AT40 Direct-Alloted 159T Tele-Engineering Development RDT&E Work
Package, Work-Unit TE004 “Rapid Load Capacity Assessment of Reinforced
Concrete Bridges,” which is sponsored by Headquarters, U.S. Army Corps of
Engineers.

This publication was prepared by personnel from Virginia Tech and the
ERDC, Geotechnical and Structures Laboratory (GSL), Vicksburg, MS. The
research described herein was conducted by Mr. Joseph Wickline and
Prof. Thomas E. Cousins, Virginia Tech, and by Ms. Yazmin Seda-Sanabria,
Structural Engineering Branch (StEB), GSL. Ms. Seda-Sanabria prepared this
publication under the general supervision of Dr. David W. Pittman, Acting
Director, GSL; Dr. Robert L. Hall, Chief, Geosciences & Structures Division,
GSL; and Mr. James S. Shore, Chief, StEB, GSL.

At the time of publication of this report, COL James R. Rowan, EN, was
Commander and Executive Director of ERDC, and Dr. James R. Houston was
Director.




1 Introduction

1.1 General

Bridges are one of the most essential links of the communication and logistic
systems in military theater-of-operations. Many types of ground military opera-
tions frequently require the rapid deployment of personnel and the movement of
heavy equipment through an existing transportation network. This network is
typically constituted by an assemblage of routes, which in turn are comprised of
numerous segments, each of which may include various types of highway struc-
tures, such as reinforced-concrete bridges.

The feasibility of the deployment and/or redistribution of ground military
forces through a region strongly depends on the capability of the existing bridges
to carry heavy military-vehicle loads. Therefore, for the successful accomplish-
ment of such military operations, it becomes crucial that the load-carrying capac-
ity (or load rating) of existing bridges be estimated as accurately as possible. The
ability to determine the load rating of all bridge structures comprised within the
area of operations undoubtedly plays a strategic role in the selection of the most
effective and appropriate route for any given operation. If a bridge on an other-
wise desirable route is unable to support the required loads, then alternative
routes must be considered. This may highly complicate a ground operation,
forcing the relocation of resources and potentially increasing the risks associated
with the safety of military personnel and equipment.

In critical operational situations, such as those concerned with rapid deploy-
ment of vehicles and troops, the effective recollection of the required information
is of paramount concern. Usually, under highly stressful conditions and with
very severe time constraints, field reconnaissance teams will rapidly approach the
bridge under consideration and retrieve as many crucial configuration parameters
as possible. The level and quality of the field information retrieved will be
crucial in determining the degree of accuracy of the final assessment of the
structural capacity. In many instances, the level of information available for the
analysis of the bridges along the selected route is very limited. Some of the most
important bridge design parameters are unknown, making it very difficult to
reasonably estimate their load capacity. Conservative assumptions based on
engineering experience must be considered in the rating analysis in order to
obtain a gross estimate of the structural capacity the bridge under consideration.
Because of the nature of the assumptions involved, these assessments may result
in a severe underestimation of the actual capacity of the bridge, limiting their use
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well below the full-service load capacity for which they were originally
designed. This situation becomes especially challenging in the case of bridge
structures having reinforced-concrete superstructures. In reinforced-concrete
T-beam bridges, for example, the girders are among the main components
controlling the load capacity of the structure. If the amount of steel
reinforcement in the girders is unknown, a good approximation of the actual
structural capacity of the bridge will be difficult to determine.

Whenever the military needs to move cargo supplies and personnel through
the United States transportation network, the task of determining the load-
capacity characteristics of existing reinforced-concrete bridges can be determined
fairly accurately. All the necessary information required for the load rating
analysis can be obtained from the design specifications and plans of the bridges
under consideration. Their complete information is typically well-documented
and available through sources such as the National Bridge Inventory (NBI) and
local state agencies. However, whenever there is the need to deploy military
forces in foreign scenarios, the task of evaluating the capacity of a bridge
becomes more complex. Some bridges in foreign countries have cast-in-place
reinforced-concrete superstructures, as is the case of T-beam bridges, and
specifications related to their design loads, material properties and construction
practices are frequently unavailable. While simplified methods based on
engineering principles for the load rating of this type of bridges are presently
available for the military engineer, they provide a very conservative assessment
especially when not all the parameters of the bridge are known. Information such
as the amount of steel reinforcement is of critical importance in the determination
of the capacity of the bridge main components. If the information on the amount
of reinforcement of the T-beam member is lacking, conservative estimates based
on design requirements can lead to overly conservative results in its rating
analysis.

In recent years, the U.S. Army Engineer Research and Development Center
(ERDC) has been working in the development of a rapid evaluation procedure to
accurately assess the load-carrying capacity of reinforced concrete T-beam
bridges in the military theater of operations. This procedure is aimed at
providing an accurate methodology that can be executed in a quick and easy way
by military field engineers. As part of these efforts, researchers at ERDC have
collaborated with faculty and staff from Virginia Tech in the development of a
methodology that incorporates a more accurate definition of the load-deflection
behavior of reinforced concrete T-beam members. The study described herein
was developed with the goal of assisting these research efforts by providing an
evaluation of various effective moment of inertia models currently available in
the literature.

1.2 Proposed Evaluation Procedure

The load-carrying capacity of a reinforced concrete T-beam bridge (see
Figure 1.1) will strongly depend in the amount of flexural reinforcement of its
main load-supporting members, as well as on the mechanical properties of the
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materials that constitute them. Typically, under in-service conditions these
properties are either partially or completely unknown.

L. 4

Figure 1.1. Typical T-beam Bridge Cross Section

1.2.1 Study Focus

The focus of this study is to accurately estimate the unknown amount of flexural
reinforcement of a reinforced concrete T-beam member. The effects related to the
concrete material properties on the load capacity of the member are not addressed
by this study under the assumption that compressive strength and, in turn, modulus
of elasticity can be reasonably estimated from knowledge pertaining to materials
and practices of the region. In addition, this study will evaluate various effective
moment of inertia models and their accuracy in defining the stiffness behavior of
T-beam members subjected to a tandem-axle load configuration. Proper selection of
this model is key in the development of the proposed load capacity evaluation
procedure. The proposed procedure, as depicted in the flowchart of Figure 1.2, is
aimed at providing a rapid methodology that uses field measurements to estimate
parameters typically unknown (such as steel reinforcement) that are key for the
determination of the load-carrying capacity of a member.

In-Field Load Test

A & Load)

.
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In this flowchart shown, the term A represents the in-field test deflection, L, is
the actual moment of inertia, I, is the cracked moment of inertia, and 4, is the
area of flexural reinforcement.

One of the key aspects of this load capacity evaluation procedure is the
definition of the load-deflection characteristics (or stiffness behavior) of the
reinforced concrete member. Typically, this behavior is represented using semi-
empirical approximations to define the transition between the moment of inertia
(or stiffness) of the loaded member between its pre-cracked and cracked
condition. In design practice, one of the models most commonly used to define
this transition has been adopted by the American Concrete Institute (ACI)
Building Code and is known as the Branson equation (ACI 2002). This equation,
also known as the effective moment of inertia, (I,), represents an “average” value
of the moment of inertia along the length of the member and is given as:

Ie=(Mcr/Ma)3]g+[1_(Mcr/Ma)3]IcrSIg (11)
where
I, = effective moment of inertia
M, = maximum applied moment
I, = gross moment of inertia
I, = cracked moment of inertia of the member

The Branson model, along with three other effective moment of inertia models,
are evaluated as part of this study using experimental data obtained as part of the
testing program described in Chapter 3.

1.2.2 Procedure Limitations

The accuracy involved in the results of a reinforced concrete T-beam bridge
load-capacity evaluation procedure can be affected by many factors. Some of
these factors include the magnitude of the vehicle loads, the vehicular wheel con-
figuration, as well as the way that loads are distributed into the main carrying
members. Thus, it is of utmost importance to select an effective moment of
inertia model that accurately represents the load-deformation behavior of the
main load-carrying members.

1.3 Objective

The objective of this study is to identify an effective moment of inertia model
that can accurately represent the stiffness behavior of a reinforced concrete
T-beam bridge girder subject to a typical military load configuration. This model
will be used as part of a load-capacity evaluation procedure or T-beam bridges
currently under development at ERDC.
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2 Literature Review

2.1 Introduction

The control of deflections experienced by reinforced concrete members dur-
ing service load conditions was not of concern until the late 1950s (Yu and
Winter 1960). During that period, material manufactures began producing higher
strength concrete and reinforcing steel and the reinforced concrete design com-
munity accepted the ultimate strength design philosophy. The combination of
these factors resulted in the design of significantly shallower, reinforced concrete
members for the same prescribed loads. The shallower members provided signif-
icant cost savings, but a drawback to the developments was the significant
deflections that the shallower members experienced under service load that the
earlier, bulky members did not. Therefore, the need for a reliable means of
calculating the deflection a reinforced concrete member would experience under
service load conditions was created.

2.2 Early Reinforced Concrete Design

2.2.1 General

The only mention of deflection in all editions of the American Concrete
Institute (ACI) Building Code prior to the 1963 edition was the maximum
allowable deflection limits printed under the “Loading and Criteria of
Acceptability” section of the Code (ACI 1956). No further guidelines or
methodology for calculating deflections was given. Designers calculated
member deflection, then as now, with an elastic deflection relationship that could
be derived from any one of numerous structural analysis methods. A stumbling
block for designers of that time and a source of debate in the academic
community was which moment of inertia value to incorporate in the elastic
deflection relationship (ACI 1966).

The moment of inertia combined with the modulus of elasticity represents the
bending stiffness of a reinforced concrete member. Bending stiffness is easily
defined for a true homogenous material like steel, but for a material like rein-
forced concrete it is, at best, an estimate that is controlled by cracking, creep,
shrinkage, and load history (Grossman 1981). Prior to the early 1960s, research-
ers had developed relationships to accurately determine the modulus of elasticity
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of concrete (ACI 1966), but an accurate method of determining the moment of
inertia, as a function of the factors mentioned above, did not exist. Therefore, the
only means of estimating the deflection that a reinforced concrete member may
experience at service load was to conservatively use the cracked moment of
inertia (/) or unconservatively use the gross moment of inertia (Z,) of the cross-
section.

2.2.2 Early Deflection Models

One of the earliest deflection models was developed by Maney in 1914
(Equation 2.1) and was based on the assumption that I, represents the moment of
inertia throughout the length of the member (ACI 1966).

A=k (f, +nf./E.d) 2.1)
where
A = member deflection
k = constant (function of loading configuration and end constraints)
L = length of the member
Js = stress in the reinforcing steel
fc = compressive stress of concrete
n = modular ratio
E; = reinforcing steel modulus of elasticity
d = depth of the reinforcement centroid measured from the compression

face of the section
T. Myrlea, chairman of ACI Committee 307 (an early committee formed by
ACI to study the deflection of reinforced concrete members) suggested the adop-
tion of Equation 2.1 by the ACI Building Code (ACI 1931). In 1940 Murashev
proposed increasing the elastic modulus of the steel reinforcement in
Equation 2.1 to account for the portion of concrete in the tension region not yet

cracked, which adds to the flexural stiffness of the reinforced concrete member
(ACI 1966). This modification can be expressed as:

E =E ly 2.2)
where E; is the reinforcing steel modulus of elasticity, and

¥=1-(2/3)(M,, /M) <1.0 (2.2a)
where

M., = cracking moment
M, = applied moment in the member

The ACI Code adopted neither form of Maney’s equation, nor any other
equations developed during those early years, probably due to the lack of
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significance of service load deflections rather than for the validity of any of these
expressions.

2.3 Effective Moment of Inertia

The increase in concrete and steel strengths and the acceptance of ultimate
strength design during the late 1950s and the early 1960s prompted many efforts
to develop an easy, reliable way of calculating the service load deflections
experienced by a reinforced concrete member. The new information on the
subject combined with the existing information, arguing the use of /; or I,
prompted ACI Committee 318 in 1957 to form ACI Committee 435 to research
the methods and literature regarding the deflection of reinforced concrete
members. The members of ACI Committee 435 published a comprehensive
study detailing their research in the June 1966 edition of the ACI Journal
Proceedings (ACI 1966). A portion of that report detailed the performance of
two relatively new procedures for calculating the deflection of reinforced
concrete members; both procedures were based on an “effective” moment of
inertia that provided a transition between the gross and cracked moments of
inertia and is assumed to be constant along the length of the member.

2.3.1 Yu and Winter Research

In 1960 Yu and Winter published the findings of their extensive research that
studied the deflection of rectangular and flanged reinforced concrete members
under working loads (Yu and Winter 1960). Their research was two-fold,
investigating both short-time and long-time deflections of rectangular and
flanged cross-sections subjected to uniform load. The authors compared
theoretical deflections, calculated by two different methods, to deflection data
acquired from six independent investigations by other individuals. The first
method (Method A) used to compute defections simply used I, in the appropriate
elastic deflection equation. The second means of calculating deflections
(Method B) accounts for the flexural rigidity supplied by un-cracked concrete on .
the tension face of the member. The supplemental rigidity was accounted for by
multiplying the deflection obtained in Method A by a correction factor. The )
correction factor was applied directly to the elastic deflection equation by
replacing I, with I calculated with Equation 2.3.

I, =1,/[(1-b*(M,/M,)) 2.3)

where

b = width of beam on the tension side
I = effective moment of inertia
I, = cracked moment of inertia
M, = applied moment

M, =0.1(f)** h(h-kd) (2.32)
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where

f
h

concrete compressive strength

total height of member
= constant (function of loading configuration and end restraint)
d = effective depth

Ideally, Equation 2.3 yields a value between I, and I,. The values obtained from
Method B gave slightly better results than Method A when compared to the
experimental deflection data. Yu and Winter were the first researchers to publish
any form of an effective moment of inertia model.

2.3.2 Branson’s Model

Dan E. Branson published the most notable reinforced concrete deflection
study in 1963 (Branson 1963). The purpose of Branson’s study was to determine
if an “effective” moment of inertia model developed by him was accurate and
reliable. Like Yu and Winter (1960), Branson tested the validity of his model by
comparing it to deflection data obtained during other investigations of
rectangular and flanged cross-sections subjected to uniform load. The model,
given by Equation 1.1, is in the form of applied load and inherently bounded by
I, and by a logical upper bound of I,. The cubic exponent was empirically
determined by applying the model to rectangular and flanged cross-sectioned
beams subjected to uniform loading. This exponent allowed the model to
inherently account for the permanent deflection sustained by a reinforced
concrete member due to the inelastic effects of tensile cracking (PCA 1999).
Equation 1.1 was found to be accurate and reliable for the purpose of estimating
the immediate deflections of a reinforced concrete member when compared to
test data available at that point in time.

The ACI Building Code adopted Branson’s equation in its 1971 edition as
the acceptable model for the computation of effective moment of inertia. It
remains until today as the recommended approach for the calculation of
immediate deflections in a reinforced concrete member. Branson’s effective
moment of inertia equation, unlike Yu and Winter’s model, is inherently bounded
by I.- and is void of any terms that would associate it to the allowable stress
design philosophy.

2.4 Moment-Curvature Relationships

An alternative to the effective moment of inertia approach of calculating
reinforced concrete member deflections is the integration of curvatures method
(Ghali 1993). Integration of curvatures involves calculating the curvature due to
a given load (Equation 2.4) at various points along a member and integrating the
curvatures over the member’s length to obtain the deflection at a desired location
(Kassimali 1995).
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w=M/(EI) 2.4
where

y = the curvature

M = applied moment

E = modulus of elasticity
I = moment of inertia

Equation 2.5 gives the basic integral for calculating member deflection
(Kassimali 1995).

A= [y 2.5)

where A is the deflection, and x is the location of desired deflection value.

This procedure shows to be a more accurate representation than previous
models because the variation in stiffness along the length of the member is
accounted for and not assumed constant (Ghali 1993). An “effective” stiffness
must be obtained to account for the portion of uncracked concrete in the tension
region that contributes to the flexural rigidity of the member. This effect is
handled in the European Building Code (CEB-FIP 1990) for reinforced concrete
by Equation 2.6, which gives an expression to calculate a mean curvature to be
used in Equation 2.5.

W =1-0y +4y, (2.6)
where

¥» = mean curvature (at a specific location)
w; = curvature at uncracked section
w, = curvature at cracked section

= interpolation coefficient

Like the effective moment of inertia models presented above, the mean
curvature expression is empirical. The empirical nature lies in the interpolation
coefficient (£) in Equation 2.6 (Sherif and Dilger 1998). The major downfall of
this method is the time required for its execution. In most instances, a computer
is required to expedite the procedure.

2.5 Other Effective Moment of Inertia Models

Since its adoption by the ACI Code in 1971, Branson’s model has been con-
tinually opposed. The reasons vary, but center around the accuracy of the model.
Design engineers argue that the cumbersome calculation of I,,, especially for
flanged sections, is complex and time consuming (Grossman 1981). They also
argue that the final product does not justify the effort required. Grossman (1981)
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states that the estimated deflection obtained by using Branson’s model is, at best,
within £20 percent of experimental deflections obtained in a controlled lab set-
ting. Another argument against Branson’s model is that its empirical nature can
produce gross errors when applied to beams that are either lightly or heavily
reinforced and/or subjected to non-uniform loads. Researchers have shown, that
in some instances, Branson’s model can produce values that are 100 percent in
error (Fikry and Thomas 1998).

These arguments and concerns prompted various researchers to study the
validity of Branson’s equation. The subsequent research produced numerous
simplifications and enhancements to the Branson model.

2.5.1 Branson Simplified

A study by Grossman (1981) determined that Branson’s model could be sim-
plified such that the computation of /., was not needed, therefore allowing an
estimation of /, to be made before the quantity and placement of steel
reinforcement was determined (Grossman 1981). The procedure can be stated as
follows:

For My/M,, < 1.6: I/l = (Mo/M,)* < 1.0 (2.72)

For M/M,, > 1.6: I/1, = 0.1(M./M.,) (2.7b)
where

I, = effective moment of inertia

I, = gross moment of inertia

M, = applied moment
M, = cracked moment of inertia

A lower bound of 1/]; equal to 0.35 is to be applied to both relationships.

The above relationships were obtained from a parametric study conducted by
Grossman (1981) that applied Branson’s equation to numerous design situations
in which reinforced concrete members had increasing loads applied to them.
Grossman’s study was based on the assumption that Branson’s equation was cor-
rect in all instances.

2.5.2 Graphical representations of Branson’s model

A few researchers succeeded in graphically representing Branson’s model.
One such researcher was Lutz (1973), who developed two sets of curves that
allowed I, I, and M,, to be determined from the cross-section geometry, rein-
forcement ratio, and the concrete properties of a given member.

These graphical methods may have proved useful in the pre-computer rein-

forced concrete design community, but their usefulness waned in the wake of
programmable calculators and personal computers.
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2.5.3 Effect of Loading Configuration on the Effective Moment of
Inertia

In 1991 scholars from King Saud University in Riyadh, Saudi Arabia, pub-
lished findings from research conducted aimed at determining if non-uniform
load configurations are accurately accounted for by Branson’s effective moment
of inertia model (Al-Zaid, Al-Shaikh, and Abu-Hussein 1991). Their research
compared theoretical moment of inertia values to experimental moment of inertia
values obtained from subjecting reinforced concrete members of rectangular
cross-section to a uniform load, a mid-span concentrated load, a third-point load,
and a mid-span concentrated load combined with a uniform load. The service
load moment applied to the member was the same for each load configuration. It
was observed that the experimental moment of inertia values for a member
subjected to a mid-span concentrated load was 12 percent greater than that
experienced by a member subjected to a third-point load, and 20 percent greater
than the experimental moment of inertia exhibited by a member subjected to
uniform loading.

The experimental values proved that Branson’s model is not accurate enough
for all loading cases. Equation 1.1 returns a value comparable to the
experimentally-obtained value for the uniform loading case, which means that if
the member is loaded with a concentrated load at mid-span the stiffness of the
member would be significantly underestimated.

Al-Zaid et al. addressed this discrepancy by suggesting that Branson’s model
be generalized by modifying it to the form of Equation 2.8.

Ie=(Mcr/Ma)’"*Ig+[1—-(Mcr/Ma)'"]*Ic,<Ig 2.8)
where
m = experimentally determined exponent
I, = effective moment of inertia
I, = cracked moment of inertia
I, = gross moment of inertia
. = applied moment
M,, = cracking moment

Their study also showed that for each load case the discrepancy previously noted
could be eliminated by generalizing Equation 1.1 and in turn solving for m as
follows:

m=log[(I,, 1)1, - 1,))/ log(M,,/ M) @.9)

exp

where I, is the experimental moment of inertia. They argued that the discrep-
ancy revealed in Branson’s model was caused by the various lengths over which
a beam cracks under a specific load condition (Al-Zaid, et al. 1991). They
suggested a model similar in form to Branson’s model that incorporates the ratio
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of cracked length to overall length and that inherently accounts for the variation
in the effective moment of inertia caused by different cracked lengths as follows,

L=(L,/Ly"*I, +[1-(L,/L)y"]*I, (2.10)
where

I, = effective moment of inertia

I, = cracked moment of inertia

I, = gross moment of inertia
m’ = experimentally determined exponent
L., = cracked length of the member

L = length of the member

The proposed model is bounded by I, = I, when L., equals 0, and by I, = I, when
the cracked length covers nearly the entire length of the member. The exponent
m’ is calculated using Equation 2.11. In theory, the exponent m” is solely a
function of the reinforcement ratio. This theory was later expanded on another
study (Al-Shaikh and Al-Zaid 1993).

m'=logl(I, ~1,)/(I ~1,)}/log(L,, /L) @11)

where I, is the experimental moment of inertia. The authors concluded that the
“modified” form of Branson’s model together with the proposed model
incorporating cracked length will produce effective moment of inertia values
relatively close to experimental moment of inertia values whenever the proper
exponent is employed.

2.5.4 Effect of Reinforcement Ratio on the Effective Moment of
Inertia

As a continuation of the aforementioned study, two of the authors later exe-
cuted an experimental program to study the effect that reinforcement ratio (p)
plays on a reinforced concrete member’s effective moment of inertia (Al-Shaikh
and Al-Zaid 1993). The experimental program was conducted by applying a
mid-span concentrated load to reinforced concrete beams, of rectangular cross-
section, containing varying amounts of reinforcement. The test specimen labels
and reinforcement quantities were:

Reinforcement Label Reinforcement Ratio
Lightly 0.8
Normally 14
Heavily 2.0

This study revealed that Branson’s model underestimated the effective moment
of inértia of all test specimens. The underestimation of I, was approximately
30 percent in the case of a heavily reinforced member, and 12 percent for a
lightly reinforced specimen. Beyond the previously observed behavior of a
reinforced concrete member subjected to a mid-span concentrated load
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(Al-Shaikh and Al-Zaid 1993), it is obvious that reinforcement ratio affects the
accuracy of Branson’s model especially when the member is heavily reinforced.
Therefore, by curve fitting, the authors derived an expression (Equation 2.12) to
calculate the exponent m for use in Equation 2.8, which is given by the following
expression:

m=3-08p (2.12)

where m is an experimentally determined exponent and p is the reinforcement
ratio. The authors also applied the more general Equation 2.10, introduced in
their earlier research, to the values obtained from this experiment. The experi-
mental values were used to develop Equation 2.13 to determine the exponent m’
for Equation 2.10.

m=FM,IM, (2.13)
where m’ is an experimentally determined exponent, and

p=08p (2.133)

where p is the reinforcement ratio.

The use of Equation 2.10 may be better suited when considering the effects
of reinforcement ratio on the effective moment of inertia, because the
discrepancy created by load configuration is already taken into account by the
cracked length term of the equation, which leaves the exponent m’ dependent
only on the reinforcement ratio.

2.5.5 A New Model

In 1998 researchers A. M. Fikry and C. Thomas (1998) published an article
in which an effective moment of inertia model was derived from basic concrete
flexural response theory. The authors were focused in developing an effective
moment of inertia model that eliminated the laborious I, calculation associated
with Branson’s model, and that would account more accurately for variations in
reinforcement ratio and load configuration. The derivation of the new model was
based on an approximation for I,,, which the authors called Z,..

The authors began their derivation with a cracked, singly reinforced,
rectangular cross-section concrete member. They derived I, as a function of two
variables (7 and p) and represented it in the form of Equation 2.14.

I, =(a+pnp)*(bd’/12) (2.14)

where

I,. = approximate moment of inertia
a = constant (given in literature)
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constant (given in literature)

modular ratio

reinforcement ratio

width of the member

effective depth of the steel reinforcement

B
n
P
b
d

]

This derivation achieved their first goal, which was eliminating the I,
calculation. The resulting approximations were found to lie within 6 percent of
the cracked moment of inertia for all test specimens.

The cracked moment of inertia approximation was also expanded to flanged

cross-sections and doubly reinforced, rectangular and flanged cross-sections.
The expanded form of Equation 2.14 is given as:

1,,=(a+pBnp)*('d’/12) (2.15)

where

p.=pb, /b (2.15a)
in which b, is the web width of flanged member and b’ is the equivalent width of
the member. The term b is detailed in the literature and accounts for a flanged
cross-section and compression reinforcement.
The authors used the basic form of the I,.. equation, along with the
assumption that uncracked concrete in the tension region of the cross-section can

be thought of as a fictitious amount of steel reinforcement, and developed it into
the following expression:

1, =(a+Bnp~)*(bd*/12) 2.16)

where o is the puenq + fictitious amount of reinforcement required to achieve L.
After applying the limits of I, = I, when M, < M,, and I, = I, when M, >> M,,,
Equation 2.17 was obtained as:

1,=1,+,-1,) (2.17)

where 1, is the effective moment of inertia, ... is the cracked moment of inertia
approximation, and I, is the gross moment of inertia, and

¢=—(Ma/Mc,)(LC,/L)p > 1% (2.17a)
¢=—(Ma/Mc,)(Lc,/L)SI% (2.17b)
where

M, = applied moment
M., = cracking moment
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L., = cracked length
L = length of the member
p = reinforcement ratio

The term ¢ is empirical and was determined from the data of over 340 previously
conducted laboratory tests.

The authors showed that their model produced reasonable results when used
to estimate the deflection of experimental reinforced concrete members. When
compared to the other available models it was not any more accurate at higher
reinforcement ratios, but, in the case of reinforcement ratios near or below 1 per-
cent, the model performed significantly better than the Branson model and the
models developed by Al-Zaid et al. (1991).

2.6 Summary

The deflection a reinforced concrete member experiences due to service load
is a complex subject. A subject that quickly became a concern of the reinforced
concrete design community in the late 1950°s when stronger concretes and steels
were made available to the industry and the ultimate design philosophy began to
gain popularity. The concern of service load deflection prompted many studies
during those transitional periods and continues to be a topic of debate. One of
those early studies produced the most notable contribution to the topic of rein-
forced concrete deflection, Branson’s effective moment of inertia model. The
model developed by Branson is given in most; if not every American design stan-
dard that addresses reinforced concrete design. Even though the research pre-
sented herein has shown the shortcomings of Branson’s equation (Equation 1.1),
it still remains the chosen means of calculating the effective moment of inertia
for the purpose of estimating reinforced concrete member deflection.

The accuracy of Branson’s equation is questionable though, especially for
non-uniform load conditions. A classic example would be a reinforced concrete
bridge girder subjected to a tandem-axle load configuration. Such is the scenario
faced by U.S. Army field engineers when trying to determine the capacity of an
in-service T-beam bridge. Therefore, the I, models selected for study (the “modi-
fied” Branson model, the “cracked length” model, and the Fikry and Thomas
model) may provide a more accurate effective moment of inertia calculation, thus
giving a better estimate of bridge capacity.

Effective moment of inertia models based on moment-curvature relationships
are ignored due to the difficulty of measuring curvature in the field. Graphical
representations (Lutz 1973) and simplified methods (Grossman 1981) available
to design engineers are based on Branson’s effective moment of inertia equation
and are also ignored due to discrepancies later revealed in this thesis.
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3 Testing Program

3.1 Introduction

The objective of the laboratory testing program is twofold: the evaluation of
a selection of effective moment of inertia models as a component of the proposed
evaluation procedure, as well as the evaluation of the application of a laser level
device as a deflection measurement instrument during field bridge load testing.
This study will address the portion related to the evaluation of effective moment
of inertia models. Personnel from the ERDC will address the evaluation of the
applicability of using a laser level device for deflection measurements. The
instrumentation, concrete testing, test set-up and implementation of the testing
procedure described herein were primarily developed and performed by
personnel from ERDC.

3.2 Test Specimens

The primary load-carrying element in a cast-in-place reinforced concrete
bridge is a T-beam girder. A T-beam consists of a web, which refers to the
portion of the bridge below the deck shown in Figure 1.1, and a flange, which is
formed by an “effective” width of deck. A monolithic casting procedure unites
the web and deck, allowing them to resist load as a single element, a T-beam.
Therefore, the testing program’s focus was full-scale T-beams subjected to a
closely spaced, tandem-axle load configuration, which is typical of military-
vehicles used during theater-of-operations scenarios.

3.2.1 T-beam Development

The basis for the design of the full-scale T-beam test specimens was a
modified field design scenario as seen from one of the bridges owned by the
Virginia Department of Transportation. Bridge girder elements were designed
using the provisions within the load factor design section in the AASHTO
Standard Specifications (AASHTO 1996), which are the design guidelines
currently used by the Virginia Department of Transportation.

3.2.1.1 Specimen Geometry. The bridge design under consideration
consisted of a 31-span with no skew, with two traffic lanes and two 3-ft
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shoulders. To accommodate the prescribed lane and shoulder width, the bridge
needed to be 29 ft 2 in. wide. Once typical parapet walls were included, that would
leave a clear roadway width of 26 ft 6 in. The 29 ft 2 in. bridge width required the
placement of four T-beam girders spaced transversely at 7 ft 9 in. (center-to-
center). The transverse spacing of the girders controlled the effective width (b,) (as
calculated per the AASHTO Standard Specification (1996)) of an interior girder
flange, making b, = 93 in. Also, incorporated into the design was a dynamic load
allowance equal to 1.33 (AASHTO 1996) and a load distribution factor of 1.29 (8/6
in AASHTO 1996). Preliminary calculations established a web thickness at 18 in., a
flange thickness at 8 in., and an overall depth of 35 in. (Figure 3.1).

93"

187

Figure 3.1. Initial T-beam Model Dimensions

The T-beam girder obtained from the aforementioned design had an estimated
weight of 19.9 tons, which was significantly heavier than the 15-ton capacity of the
ERDC testing laboratory crane that would be used to set the beam in place. Thus,
the dimensions of the design girder were modified to achieve a test specimen that
could be handled safely by the ERDC laboratory equipment (Figure 3.2).

60

™
8"
4

307

»..__1'2*_.

Figure 3.2. Test Specimen Dimensions
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To accommodate there requirements, the overall length of the T-beam
member was reduced by 2 ft to achieve a final total length of 29 ft, while still
maintaining a length that reasonably represents the span of a simply supported
T-beam bridge. The depth of the flange was kept at 8 in, which provides a
reasonable representation of deck thickness in these type of bridges. The web
thickness was reduced to 12 in. to allow the horizontal clearance for three
columns of flexural reinforcement (ACI 1999) as compared to adequate clearance
of four rows within the initial 18 in. web (ACI 1999). Once the geometric
parameters were defined, the overall flange width was reduced to 60 in. while the
overall depth was reduced to 30 in. to achieve an acceptable overall weight.
These geometric reductions resulted in an estimated beam total weight of
10.9 tons, which was within the capacity limitations prescribed by the laboratory
lifting crane equipment.

3.2.1.2 Specimen Reinforcement. Once the geometry of the test specimen
was established, an analysis was conducted to determine the effects that different
levels of reinforcement ratios would have in the load-deflection behavior of the
member. The analysis theoretically subjected the test specimen to an AASHTO
alternative military load configuration (AML) (AASHTO 1996). An AML,
designated HS25 by AASHTO (Figure 3.3), consists of a tandem axle load
configuration (spaced 4 ft center-to-center) that supplies two concentrated loads,
each equaling 24 kips. The AML was utilized in lieu of a typical AASHTO
design truck because the proposed analysis procedure will be used in situations
where heavier, more closely spaced wheel loads, typical of military equipment,
are of concern. The tandem-axle load configuration was situated symmetrically
about the mid-span of the T-beam to produce the largest possible deflection due
to the twin 24 kip loads.

4/

28’

Figure 3.3. AASHTO Alternative Military Load Configuration

The analysis revealed that the test specimen would experience significant
variations in deflection when reinforced with steel areas, 4,, between the
minimum allowed area of steel, A;.m» (the amount of steel required to prevent an
abrupt failure at loads near the cracking moment) and approximately 50 percent
of the balanced area of steel, A, (the area of steel associated with the state where
there is simultaneous yielding of the steel reinforcement and crushing of the
concrete’s extreme fiber). The values of 4;...:,» and A corresponding to a typical
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test specimen (0.88 in.? and 30.5 in.2, respectively) are calculated per ACT 318-99
and MacGregor (1997), respectively. A sample calculation of both values is
provided in Appendix D.

This behavior is illustrated in Figure 3.4, where it can be seen that for
reinforcement levels greater than 50 percent of 4, there is a minimal variation in
the member’s deflection under loading.
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Figure 3.4. Variation of Deflection with Amount of Steel Reinforcement

Based on these observations, a decision was made to fabricate the test
specimens with three different amounts of reinforcement. The reinforcement
amounts selected for the testing program corresponded to 4, = 8 in?, 4, =5 in?,
and 4, = 3 in%. For these levels of reinforcement, the calculated vertical
deflections corresponded to A = 0.33 in, A =0.47 in, and A = 0.70 in,
respectively. The analysis of members with various levels of reinforcement
would allow researchers to evaluate the accuracy of a laser level device in
capturing small variations in deformation due to its flexural stiffness variation. It
would also provide a basis to evaluate which effective moment of inertia model
provide the most accurate characterization of the stiffness behavior of reinforced-
concrete beam members.

3.2.1.3 Basic Properties. A total of nine T-beam test specimens were fabri-
cated. These were classified in three similar sets of beams (“Set A”, “Set B”, and
“Set C”), with each set having one beam of each reinforcement level. The basic
specimen properties for each reinforcement quantity are presented in Table 3.1.
A cross-section of each reinforcement quantity is shown in Appendix D.
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Table 3.1 Gross Cross-Section Properties

Ag(in.%) 8 5 3

I, (in.%) 51530 51530 51530
0 (%) 2.66 1.60 0.93
d(in.) 25.1 26.1 26.9

A, = area of steel reinforcement.

I = gross moment of inertia.

p = steel reinforcement ratio.

d = effective depth of steel reinforcement.

3.3 Materials
3.3.1 Concrete

The concrete used for the test specimens was batched at a local ready mix
plant and trucked to a site on the grounds of ERDC for casting. The constituents
of the concrete-mix were Type I cement, fine aggregate, river gravel (chert) as
coarse aggregate, water, and an ad-mixture that was added at the site (D-19) to
allow for increased workability of the uncured concrete. Quality control tests in
the form of slump and air content were performed upon delivery of the uncured
concrete. To provide means for testing cured concrete properties, specifically
compressive and tensile strength, twelve 6-in by 12-in cylinders were cast
simultaneously with each test specimen. A set of three concrete cylinders was
tested to determine compressive strength on the 28"-day as well as on the day of
testing to ensure the prescribed 4000 psi strength (Table 3.2).

Table 3.2 Compressive Strength
Compressive Strength
: Casting 28 Day 28 Day 28 Day
Specimen Date TestDay | TestDay | TestDay Average

A8 4850 4780 4640 4760
5100 4860 4800 4920

4340 4360 4190 4300

AS 18-Apr-01 I—550 4740 5000 4910
A3 4600 4670 4660 4640
4900 5200 5300 5130

B8 4170 4260 4440 4280
5230 5070 5320 5210

B5 17-May- 5050 4660 4760 4820
01 5870 5890 5720 5830

B3 4450 4210 4370 4340
5260 5300 5080 5210

cs 5000 5070 4840 4970
5700 5760 5700 5720

cs 14-Jun- 4630 4520 4580 4580
01 5300 5370 5300 5320

c3 4150 3920 4110 4060
4610 4540 4800 4650
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The value of compressive strength used in theoretical calculations has a sig-
nificant effect on numerous cross-sectional properties. Listed in Tables 3.3 and 3.4,
respectively, are the affected properties and their values as calculated with the
28-day compressive strength and the test day compressive strength. Sample cal-
culations for E,, I.,, and M,, are given in Appendix D.

All calculations made hereafter incorporate the values determined with the test
day compressive strength. The test day strength is utilized to eliminate the error that
occurs between experimental and theoretical results if the 28-day strength or the
prescribed 4000 psi strength is employed the theoretical calculations.

Table 3.3 Cross-Section Properties (28 day)
28 Day Specimen Properties

Set A B C

A, (in.%) 8.0 5.0 3.0 8.0 5.0 3.0 8.0 5.0 3.0
f; (psi) 4760 4300 4640 4290 4820 4340 4970 4580 40860
? 6.1 6.7 6.3 6.8 6.0 6.7 5.8 6.3 7.1
E. (ksi) 3940 3740 3890 3740 3960 3760 4020 3860 3640
I (in.) 25700 { 20000 | 13100 | 27000 | 18800 | 13400 | 25400 | 19200 | 13800
M. (ft*kip) 107.9 | 100.9 | 105.6 { 102.0 [ 108.1 | 102.6 | 109.8 | 105.4 99.2

Table 3.4 Cross-Section Properties (Test Day)

Test Day Specimen Properties

Set A B c
A, (in.}) 8.0 5.0 3.0 8.0 5.0 3.0 8.0 5.0 3.0
Age (days) | 41.0 | 48.0 | 44.0 68 61 54 49 49 43
f. (psi) 4920 | 4910 | 5130 | 5210 | 5830 | 5210 | 5720 | 5320 | 4650
? 5.9 5.9 57 5.6 5.0 5.6 5.1 55 6.2
E. (ksi) 4000 | 4000 | 4090 | 4114 | 4352 | 4114 | 4311 | 4157 | 3887
I (in.) 25500 | 18700 | 12500 | 24900 | 17300 | 12400 | 23900 | 18000 | 13000
M., (ft'iip) | 109.2 | 109.1 | 1115 | 1124 | 1189 | 112.4 | 117.8 | 113.6 | 106.2

3.3.2 Reinforcement

Two sizes of deformed mild-steel bars (Grade 60) were used as various forms
of reinforcement in the T-beam test specimens. In all specimens the flexural rein-
forcement consisted of some quantity of No. 9 deformed steel bars. The shear
reinforcement (U-shaped stirrups), as well as the flange reinforcement, was No. 4
deformed steel bars.

The amount of shear reinforcement necessary to guard against a shear failure
during the testing program was determined as prescribed by the provisions in Sec-
tion 11.5 of the ACI Building Code (2002). The test specimen requiring the greatest
amount of shear reinforcement was that with 8 in> of flexural reinforcement, for
which it was necessary to provide No. 4 stirrups spaced at 12 in. (center-to-center).
The same shear reinforcement schedule was called out for all test specimens to
simplify the fabrication process.

The longitudinal reinforcement located in the flange of the test specimen is
representative of flexural reinforcement present in the deck of a T-beam bridge.
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This reinforcement becomes compressive reinforcement when a single-span
T-beam is subjected to positive bending, but its effect is ignored herein. The
reinforcing bar material utilized was frequently used in projects at the ERDC and
the material properties were determined as follows: steel yield strength (f;)
equaled 60,000 psi and the modulus of elasticity (E.) equaled 29,000 ksi. A
typical reinforcement layout is illustrated in Figure 3.5 below.

#4 boars @ 12’ c-c #4 bors @ 135 c-c
. ya

/ —— As O‘x
#4 bors e |27 c-c—/

¥ — NOTE: SEE TABLE 31 /

Figure 3.5. Typical Reinforcement Layout for Specimen

3.4 Casting

One set of test specimens (with T-beams corresponding to steel
reinforcement areas of 8 in.2, 5 in.%, and 3 in.2, respectively) was cast on the same
day, resulting in three different days of casting for all three sets. Each test
specimen required 5.55 yd® of concrete; therefore a single ready-mix truck was
dispatched for the casting of each beam. Prior to casting, the formwork was
constructed at the pour location and the reinforcement properly placed (Figure
3.6). Incorporated in the reinforcement were two steel anchors, placed near the
top, at strategic locations, to allow for handling (Figure 3.6).

During casting, the concrete was carefully poured on each form and thor-
oughly vibrated for placement consistency. After the casting was complete, the
exposed surface of the specimen was finished and the set was left to cure.
Fourteen days after casting, the formwork was removed and the beams were
stored until testing could take place.

3.5 Instrumentation

Various forms of instrumentation were utilized on the test specimens to
monitor their behavior during testing. Before casting, three MicroMeasurements
strain gages were attached to three different reinforcing bars near the centroid of
the steel reinforcement on each girder. These strain gages were installed to
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monitor the tensile stresses in the steel reinforcement during testing. Attached to
the top surface (compression face) of each test specimen were seven
MicroMeasurements strain gages that recorded the compressive strain in the con-
crete. To insure a good contact between each strain gage and the concrete, a
hand-held circular grinder was used to smooth the concrete surface before

Figure 3.6. Typical Reinforcement Layout

attaching the gages. F ive gages were placed directly over top of the beam web
and one gage was placed out on each flange (Figure 3.7).

Once a specimen was set into place amidst the load frame, five Sensortec
DLF3000 linear voltage displacement transducers (LVDTs) were placed in stra-
tegic locations to monitor vertical deflection during testing. Three LVDTs were
centered under the web, one at mid-span and one under each load (Figure 3.8).
An LVDT was also placed on the outer edge of each flange at mid-span to moni-
tor rotation of the specimen during testing. The strain gages and each LVDT
were wired to a MEGADAC 3415AC data acquisition system, which
continuously recorded the data for later analysis.
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3.6 Test Setup

A test specimen was supported on simulated, steel bridge bearings; which
modeled typical end conditions of a T-beam bridge. One of the steel bearings
was allowed to rotate as well as to translate horizontally (acting as a roller), while
the other one was only allowed to rotate (acting as a pin).

Figure 3.7. Strain Gage Configuration

An elevation view of the test set-up is illustrated in Figure 3.9. A simulated,
tandem-axle service load was supplied by two MTS hydraulic actuators spaced 5-
ft apart (center-to-center) and placed symmetrically about the girder’s mid-span.
The spacing was limited by the center-to-center minimum spacing of the
hydraulic actuator system of 5-feet. It should be noted that this spacing slightly
differs from the tandem load center-to-center spacing of 4 ft prescribed by the
AASHTO AML load configuration being represented on this test. Special steel
braces were designed and placed near the lateral ends of the test specimen (as
shown in Figure 3.10) to ensure that the specimen would not rotate and/or fall off
from its steel bearings during load testing.

3.7 Testing Procedure

Each test consisted of various cycles of service load to produce a moment
equal to that generated by an AASHTO AML load configuration. The service
load moment was calculated as 348 ft-kip, which represents a required applied
load by each actuator equal to 30 kips.
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During each load cycle, the applied load, deflection, and strain values mea-
sured by the hydraulic actuators, LVDTs, and strain gages respectively were con-
tinuously recorded by the Mega-DAC 3415AC. The applied load was stabilized
at 10 kip load intervals (5 kip/actuator) to allow a deflection reading to be taken

using the Laica N2002 digital laser level.

5/29/2G

Figure 3.8. LVDTs Location on T-beam Specimen

[

1

oo
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Figure 3.9. Elevation View of Test Setup
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Figure 3.10. Cross Section View of Test Setup

3.8 Summary

The testing program described in Chapter 3 was aimed at recording test data
needed to evaluate the accuracy of various effective moment of inertia models in
characterizing the load-deflection behavior of reinforced concrete T-beam
subjected to a tandem-axle load configuration. The data included the
measurement of midspan deflections and corresponding load magnitudes, as well
as compressive strain deformations in the member. The load versus deflection
plots for all T-beam specimens are presented in Appendix A.
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4 Test Specimen Behavior

4.1 General

The idealized flexural behavior of a beam cross section under increasing
loading is depicted in Figure 4.1 (MacGregor 1997, Nawy 1996). In this chapter,
both the idealized as well as the actual T-beam behavior are discussed, as a
prelude to the comparison between the experimental data and the theoretical data

presented in Chapter 5.
Inelatic Behaivor
C D— Until Concrete Crushes
- Stee!l Yield
= B
o) Service Load Reglon’
—
A
Cracking Moment
O ,
Deflection

Figure 4.1. Idealized Flexural Behavior of a Beam

4.2 |dealized T-beam Behavior

A T-beam cross-section which is previously uncracked, will elastically resist
the applied load (see Region OA of Figure 4.1) until the cracking moment (i.e.,
the moment at which the tensile stress in the bottom fiber of the concrete exceeds
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the concrete’s flexural tensile strength) is exceeded at some location along the
length of the member. At point A depicted in Figure 4.1, the applied moment
reaches the member’s cracking moment at or near the section of maximum
moment, which results in tensile cracking. The bending stiffness at a crack loca-
tion is immediately reduced to that provided by a cracked section; which reduces
the specimen’s overall bending stiffness. As applied load increases, the cracking
phenomenon is repeated along the length of the member resulting in a continual
reduction of bending stiffness, allowing greater deflection per load increment
throughout the service load region of Figure 4.1 (Region AC). In Figure 4.1,
although Region AC is modeled with a linear line segment (i.e., elastic behavior),
the reality is that Region AC will exhibit a non-linear behavior due to the
inelastic effects of tensile cracking.

At a specific service load level the bending stiffness varies along the length
of the T-beam due to alternating cracked and uncracked cross-sections. As later
discussed, this variable stiffness is addressed by assuming an “effective” bending
stiffness constant over the T-beam’s entire length. All subsequent loads less than
the largest applied load are resisted by the effective bending stiffness. Graphi-
cally, subsequent load cycles would follow a linear line segment that originates at
an offset (the permanent deflection sustained by the member due to the inelastic
of tensile cracking) from the origin in Figure 4.1 and extends to the terminus of
the idealized load versus deflection plot (a function of applied load).

If the member is subjected to ever increasing load magnitudes, the member’s
overall bending stiffness will eventually be reduced to that provided by a single
cracked section. This occurs when the additional stiffness provided by uncracked
concrete becomes negligible. All load applied beyond that is resisted by the
bending stiffness of a cracked section until the steel reinforcement yields
(Point C, Figure 4.1). After the steel reinforcement yields, additional load causes
the T-beam to behave in an inelastic manner until compressive stresses exceed
the compressive strength of the concrete, which is considered failure.

In general, bending stiffness is a product of the constituent material’s
modulus of elasticity and the member’s moment of inertia. In the case of a
reinforced concrete T-beam, the modulus of elasticity is typically assumed to be
constant, thus the bending stiffness is directly proportional to the cross-sectional
moment of inertia. Therefore, to better understand bending stiffness behavior,
the ratio of actual moment of inertia (/,.,) to a member’s gross moment of inertia
(Zg) is plotted versus the ratio of applied moment (M,) to cracking moment (M,,)
(Figure 4.2).

The curve in Figure 4.2 illustrates that the actual moment of inertia is equal
to the gross moment of inertia until the applied moment reaches the cracking
moment (Region OA of Figure 4.2). As the magnitude of applied moment
increases (Region B of Figure 4.2), the rate at which the actual moment of inertia
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Figure 4.2. Idealized Moment of Inertia versus Applied Load

decreases is sharp at first, but the behavior of 1., becomes asymptotic to I, for
larger values of M,. If loading is continued, the actual moment of inertia contin-
ues to decay until it reaches the cracked moment of inertia. After that, the
cracked moment of inertia will resist the applied load until the steel
reinforcement achieves yielding (Point C, Figure 4.2).

4.2.1 Variable moment of inertia

The moment of inertia of a reinforced concrete T-beam just before its
cracking moment is exceeded corresponds to the gross moment of inertia of the
cross-section. After cracking takes place, the moment of inertia at the crack
location corresponds to the cracking moment, while other sections continue to
behave as uncracked. The alternating cracked and uncracked cross-sections
along the length of the member are commonly addressed by calculating an
effective moment of inertia value and assuming that value constant over the
member’s length. Assuming a constant moment of inertia value simplifies the
flexural analysis of the T-beam to that of most prismatic members, even though
its cross-sectional properties vary along its length due to cracking.

The sketches in Figure 4.3 illustrate the variation of moment of inertia over
the length of a reinforced concrete T-beam. Section a-a shows an uncracked sec-
tion and section b-b shows a cracked section Figure 4.3). A sample calculation
for both the gross moment of inertia and the cracked moment of inertia are
presented in Appendix D.
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Figure 4.3. Variation of I, along a Reinforced Concrete Member

4.3 Typical Experimental Behavior

The typical behavior of the T-beam test specimens was similar to the
idealized behavior explained in the previous section. To show the typical test
specimen behavior a representative load versus deflection plot is presented

Figure 4.4.
a2 B
m

=
&<
=
3]
(=]
s

a-a: m= 65 k/in.

I & I: m=80 Kin.
0 Sy ——

perm. Deflection (in.)

Figure 4.4. Actual Load versus Deflection Plot (Specimen A8)

Figure 4.4 exhibits three load versus deflection curves, one for each cycle of
service load applied to specimen A8. Note that these load versus deflection
curves are up to service load, which is represented by region B in Figure 4.1.
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4.3.1 Initial Load Cycle

The first load cycle was applied to an uncracked test specimen. Figure 4.4
shows Curve I of the form of the idealized load versus deflection plot previously
illustrated in Figure 4.1. In this figure, segment a-a is defined as the upper
portion of Curve I, which will be discussed further in detail in the upcoming
paragraphs.

The portion of Curve I leading up to segment a-a exhibits a less steeper slope
than the one corresponding to Curves I and III. Since a concrete member is
most rigid during the first applied load cycle --when the member is uncracked--,
Curve I should have presented a steeper slope than Curves II and IIL.

Lg

service—load

Load

Curve 1

ICI"

Deflection

Figure 4.5. Initial Load Cycle Behavior

The arrays propagating outward from the origin in the plot shown in
Figure 4.5 represent different moment of inertia values that a reinforced concrete
member is capable of exhibiting under increasing amounts of applied load. The
array closest to the vertical axis represents the gross moment of inertia, I, for the
member while the array closest to the horizontal axis represents its cracked
moment of inertia, I,. These are the upper and lower bound values of the
member’s actual moment of inertia, 7, The intermediate arrays represent values
of I, bounded between I, and I, that are achievable as the member is subjected
to larger applied loads.

As an uncracked member is loaded for the first time, the stiffness behavior of
the member initially follows a pattern closed to that of I,. The behavior of the
member follows this array until the first crack occurs, when its moment of inertia
“jumps” to a lower moment of inertia level (J;, I, etc.). This phenomenon
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continues as more cracks form at regular intervals along the length of the member
(i.e., for each crack formed another “jump” occurs on the plot). In reality, these
“jumps” are not distinguishable because an actual load versus deflection plot is
smoothed by the average moment of inertia of the member. Hence the behavior
illustrated by Curve I in Figure 4.4. This study is concerned with measuring and
modeling the actual moment of inertia of an in-service (previously cracked)
T-beam bridge girder. Therefore, the values obtained from the first load cycle
are not discussed any further.

4.3.2 Subsequent Load Cycles

Figure 4.2 clearly illustrates that the actual moment of inertia of a reinforced
concrete member is a function of the applied load. In theory, the behavior
exhibited in the second (Curve II) and third (Curve III) load cycles of Figure 4.4
should exhibit approximately similar slope as the final segment (Section a-a) in
Curve 1. Displayed in Figure 4.6 are the approximate slopes corresponding to
segment a-a and Curves Il and III. A comparison of the values reveals the slope
(i.e., the stiffness) of Curves II and III (80 kip/in.) is greater than the one
corresponding to segment a-a (65 kip/in.).

In the case of an in-service T-beam, generally there is little knowledge of
load history, although, it is reasonable to assume that the member has
experienced significant cracks due to applied loads that exceeded the cracking
moment. The in-service T-beam possesses some amount of permanent deflection
due to the inelastic effects of tensile cracking, which is unknown in an in-field
situation. Consequently, the loads versus deflection curves generated during an
in-field load test are analogous to the curves in Figure 4.6, which correspond to
Curves II and HII shown in Figure 4.4 with the permanent deflection subtracted
from them.

4.4 Test Specimen Behavior Conclusions

A member’s actual moment of inertia () is a function of applied load. The
behavior of an in-service T-beam in terms of its moment of inertia is greatly
influenced by the largest applied load the member has resisted during its service
life. Due to that load, a given T-beam exhibits an actual moment of inertia that is
some value less than its gross moment of inertia and greater than or equal to its
cracked moment of inertia.

The actual moment of inertia of a reinforced concrete T-beam member can be
obtained by conducting a field load test. Due to the fact that actual moment of
inertia is a function of applied load the magnitude of the test load will affect the
results of the analysis. To better explain this, a load versus deflection plot (Fig-
ure 4.7) illustrating the behavior of a generic T-beam bridge girder, over its ser-
vice life, is given. The service load cycle behavior can be assumed linear, which
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Figure 4.6. Specimen Load versus Deflection Curves (specimen A8)

represents a reasonable assumption for load levels greater than approximately
1.5 M,,. Also note that the permanent deflection is ignored in Figure 4.7 as to
model the load versus deflection curves obtained from an in-field load test.

For simplicity, assume that the initial load cycle curve in Figure 4.7 is the
largest load in the girder’s load history. If the in-field test load is some fraction
less than the initial load the resulting curve follows the service load cycle curve
on the left in Figure 4.7. In this situation, the load and deflection values at
service load produce approximately the same conservative I, value.
Conservative because the service load versus deflection behavior of a reinforced
concrete member is approximately linear and the test load is less than the largest
sustained load.

If a field test load is larger than the initial service load, the load versus
deflection curve follows the service load curve on the left, then, the overload
cycle curve in Figure 4.7. The resulting load versus deflection will produce an
inaccurate actual moment of inertia value due to additional cracking when the
member is subjected to the larger load for the first time. For this reason, it is
recommended that during a field load test a subject bridge be pre-loaded before
any measurements are recorded. In the event an overload occurs, the subsequent
test load cycle will follow the service load curve to the right in Figure 4.7. In this
situation a conservative estimate of I, is obtained as long as the overload did not
exceed the capacity of the member. To avoid approaching a bridge’s ultimate
load capacity during a field test, safe-loading criteria needs to be established. It
is the goal that such criteria can be established from the findings of this research
and previous projects that focused on the behavior of reinforced concrete T-
beams.
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Figure 4.7. Life-cycle Behavior of T-beam Bridge Girder
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5 Analysis of Results

5.1 General

The LVDT measured mid-span deflections and corresponding applied load
values generated during the testing program outlined in Chapter 3 are used herein
to determine which effective moment of inertia model (selected for study as a
component of the proposed analysis procedure) most accurately models the ser-
vice load behavior of a reinforced concrete T-beam subjected to a tandem-axle
load configuration, typical of military equipment (AASHTO 1996). The models
selected for study are:

a. The ACI Code Equation (Branson’s model) (ACI 2002, Branson 1963),
as given by Equation 1.1.

b. A generalized version of Branson’s model (Al-Zaid et al. 1991), as given
by Equation 2.8.

c. A cracked length form of Branson’s model (Al-Zaid et al. 1991), as
given by Equation 2.10.

d. The Fikry and Thomas model (Fikry and Thomas 1998), as given by
Equation 2.17.

As a component of the proposed analysis procedure, the models listed above
yield a value for the cracked moment of inertia (/.,) when a field-measured
moment of inertia (/,.,) is substituted for I,. For example, Equation 5.1 is
Branson’s model rearranged to solve for I, when I, is replaced with 1,,.

I, =[1

et — (M I MY T =(M,, | M) ;.1
where

I, = cracked moment of inertia of the section
I, = actual moment of inertia of the section

I, = gross moment of inertia of the section
M, = applied moment
M., = cracked moment of inertia of the section
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The I, term in Equation 5.1 is obtained by solving an elastic deflection relation-
ship for the moment of inertia, given a deflection and corresponding load gen-
erated during a field load test.

As mentioned before, the primary function of the proposed analysis
procedure is to estimate the amount of flexural reinforcement (4,) contained in an
in-service T-beam bridge girder. An estimate of 4; can be made by solving the
higher order polynomial that results from substituting the value of I.,, obtained
from Equation 5.1 or a similar model, into the equation below (Equation 5.2),
which is obtained from a transformed section analysis.

I, =(1/3)bc® + nAs(d - c)* (5.2)
where
I, = cracked moment of inertia
b = width of section
¢ = depth to neutral axis
n = modular ratio (E/E,)
d = effective depth of reinforcement

The focus of this discussion is to compare experimental moment of inertia values
to theoretical moment of inertia values obtained from the selected effective
moment of inertia models. First, the discussion focuses on the well-known Bran-
son model then progresses to two “enhanced” forms of Branson’s model whose
forms compensate for the shortcomings of the Branson model discussed in Chap-
ter 2. A fourth model is also discussed which was derived with the purpose of
eliminating the same Branson model shortcomings. In conclusion, the model that
most accurately models the behavior of a cracked, reinforced concrete T-beam
subjected to a load configuration typical of military equipment will be recom-
mended for use in the proposed analysis procedure.

5.2 The Branson Model

A discussion regarding effective moment of inertia models begins with the
model developed by Branson in the early 1960s (Branson 1963). Since its con-
ception, it has been the chosen method for calculating the moment of inertia of a
reinforced concrete member for the purpose of estimating deflection. This model
is recommended by the ACI Building Code (ACI 2002), as well as, most other
design building codes that address reinforced concrete design.

Branson’s model yields an effective moment of inertia value that corresponds
to the total deflection a reinforced concrete member experiences due to a given
service load (PCA 1999). Total deflection is that measured from a datum, set
when the member is cast, therefore including the deflection a reinforced concrete
member cannot elastically recover from due to cracking (i.e., permanent
deflection).
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In the proposed analysis procedure a deflection and corresponding load from an
m-field load test will be used to calculate a member’s actual moment of inertia (/).
If the resulting I, value is substituted into Equation 5.1 (Branson’s model
rearranged to solve for I.,) an erroneous I, value willbe generated since the per-
manent deflection of the member has not been measured. The magnitude of the

- error is determined in the following discussion, which compares moment of inertia
values calculated by Branson’s model to moment of inertia values obtained from
experimental data.

5.2.1 Branson Model Versus Experimental Values

The data generated during the aforementioned testing program, which included
load-testing nine T-beam test specimens, is evaluated to understand the discrepancy
that occurs when substituting an I, value, obtained during a field load test, into
Branson’s model to determine /... Representative data for each flexural
reinforcement quantity (8 in., 5 in., and 3 in.?) is presented both graphically and
numerically in this discussion.

The data is presented in the form of load versus deflection graphs and in table
format, both provide a comparison between theoretical and experimental data. Note
that all data presented in section 5.2.1 is void of permanent deflection, which is
typical of data obtained during an in-field load test.

5.2.1.1 T-beam Specimens with A, = 8 in?. The three test specimens having
an area equal to 8 in.? of flexural reinforcement (specimens A8, B8, and C8) all
exhibited similar behavior when subjected to the service-loading testing program.
Specimens B8 and C8 were subjected to a total of five load cycles, while
specimen A8 was subjected to three load cycles. After the final service load cycle
was applied to beam A8, it was loaded to failure to create a control for future testing
that is not germane to the objective of this thesis. The test data for specimen BS is
presented herein as representative of the specimens containing 8 in. of flexural
reinforcement. The curves in Figure 5.1 show that Branson’s model overestimates
the testing program deflection by approximately 20 percent. They illustrate that the
calculated stiffness per Branson’s model (Equation 1.1) is less than the stiffness
resisting the applied service load.

To validate this, the effective moment of inertia values obtained from Branson’s
model (I..sranson) are compared to actual moment of inertia values (I, (obtained
experimentally) over a range of applied load values (M/M,,), as presented in
Table 5.1. At service load, Branson’s model produces a moment of inertia value that
is approximately 17.5 percent less than the measured I,.. The difference is most
likely due to the inclusion of inelastic effects, due to tensile cracking, by Branson’s
model.

Table 5.2 shows the cracked moment of inertia values obtained from Branson’s
model (defined as I, grsnson, Where I, is substituted for ;) and compared to 1,1,
which is the moment of inertia obtained from a transformed section analysis (as
given by Equation 5.2). This comparison reveals that if Branson’s model is
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Figure 5.1. Typical Load versus Deflection A; = 8 in.? (Specimen B8)

Table 5.1
Moment of Inertia Values A, = 8 in.? (B8)
M,/M,, let (in.%) ly.pranson (in.%) % Difference
0.51 50700 51600 -1.8
1.02 39700 49800 -25.4
1.36 37100 35500 4.3
1.53 35800 32300 9.8
1.70 35000 30300 13.4
1.87 34400 29000 15.7
2.05 33800 28100 16.9
2.21 33300 27400 17.7
2.38 32800 26900 18.0
2.56 32300 26500 18.0
273 32000 26300 17.8
2.90 31600 26000 17.7
3.05 31400 25900 17.5

used to determine I, (using the values of I, from Table 5.1), I, is overestimated
with respect to I,.7z. If a measured I,., from an in-service bridge test is
substituted into Equation 5.1, a non-conservative estimate of I, will be obtained
since permanent deflection can not be measured during a field load test.
Therefore, the measured I,., is greater than the moment of inertia required to
obtain the . value calculated with Equation 5.2 for the T-beam in question.
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Table 5.2
Comparison of |, Values A; =8 in.2 (B8)
Ma/Mcr Icr-BRANSON (in'4) Icr-TR (in-4) % Difference
0.51 51700 24300 51.8
1.02 * 24800 *
1.36 27700 24900 10.1
1.53 29800 24900 16.4
1.70 30900 24900 19.4
1.87 31400 24900 20.7
2.05 31500 24900 21.0
2.21 31500 24900 21.0
2.38 31400 24900 20.7
2.56 31100 24900 19.9
2.73 31000 24900 19.7
2.90 30800 24900 19.2
3.05 30700 24900 18.9
Note: (*) Model gives large, unrealistic results at loads close to M.

5.2.1.2 T-beam Specimens with A = 5 in. The test specimens containing
an area equal to 5 in. of flexural reinforcement (specimens A5, B5, and C5) also
exhibited similar behavior, as a group, when subjected to service load. Test
specimens A5 and C5 exhibited almost identical behavior, while specimen B5
experienced deflections approximately 8 percent higher at all load levels. A
possible cause for the discrepancy is a computer malfunction that prevented the
deflection and load from being recorded until approximately 30 percent of the
service load was applied to the member. Specimens B5 and C5 were subjected to
five load cycles, while specimen A5 was subjected to three load cycles and then
loaded to failure to create a control for future testing that is not germane to this
thesis. The test data for specimen CS5 is presented herein as representative of the
specimens containing 5 in.? of flexural reinforcement.

Similar to the specimens containing an area equal to 8 in.” of flexural rein-
forcement, the curves in Figure 5.2 illustrate that the use of Branson’s model
overestimates the measured deflections by approximately 11 percent for speci-
mens possessing 5 in.? of flexural reinforcement.

Once again, the calculated stiffness per Branson’s model (Equation 1.1) is
less than the stiffness resisting the applied service load. To better understand,
effective moment of inertia values obtained from Branson’s model (Z,.sranson)
are compared to actual moment of inertia values (/,.) (obtained experimentally)
over a range of applied load values (M,/M,,) (Table 5.3). The values in Table 5.3
reveal an approximate 12.5 percent difference between experimental and
theoretical moments of inertia. This is due, in part, to the model’s inclusion of
the inelastic effects of tensile cracking. Table 5.4 compares the cracked moment
of inertia values obtained from Branson’s model, I, sranson, (as when I, is
substituted for I,) to cracked moment of inertia values obtained from a
transformed section analysis (Z.,-1z).

The values in Table 5.4 reveal that I, is overestimated if I, is substituted

into Equation 5.1 as compared to the I, values obtained from a transformed
section analysis. Once again it can be observed that if Branson’s model is used
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Figure 5.2. Typical Load versus Deflection A, = 5 in.? (Specimen C5)

Table 5.3

Moment of Inertia Values A, = 5 in.? (C5)
MJM. faet (in.% Lo.sranson (in.") % Difference
051 30000 51600 72.0
1.01 24600 50400 7104.9
1.35 23600 31800 347
152 23000 27600 200
1.60 22800 25100 401
1.85 22700 23300 26
2.02 22400 22100 13
2.19 22300 21200 49
2.36 22200 20600 7.2
253 22100 20100 9.0
2.70 22000 19800 10.0
2.87 22000 19500 14
3.02 22000 19300 12.3

to determine I, given an I,., from an in-service bridge load test, I,, will be overesti-
mated for the reasons discussed previously in section 5.2.1.1.

5.2.1.3 T-beam Specimens with A, = 3 in.? The test specimens containing
3 in.2 of flexural reinforcement (specimens A3, B3, and C3) possessed the lightest
reinforcement ratio of the T-beam test specimens. Due to the small amount of
reinforcement, the service load moment was reduced by approximately 30 percent
to avoid failure of the member. Experimental deflection and corresponding load data
were collected for specimens B3 and C3 only, both of which were subjected
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Table 5.4
Comparison of I, Values A, = 5 in.2 (C5)
McrlMa Icr—BRANSON (in-4) l¢:r-TR (in'4) % Difference

0.51 54800 18000 67.2
1.01 * 18000 *
1.35 4300 18000 -319
1.52 11600 18000 -55.2
1.69 15300 18000 -17.6
1.856 17400 18000 -3.4
2.02 18500 18000 2.7
2.19 19300 18000 6.7
2.36 19800 18000 9.1
2.53 20200 18000 10.9
2.70 20500 18000 12.2
2.87 20700 18000 13.0
3.02 20900 18000 13.9

Note: (*) Model gives large, unrealistic results at loads close to M.

to five cycles of service load. No usable data was obtained for specimen A3 due
to an attempt to conduct the test procedure in deflection control, which did not
allow the actuators to apply equal magnitude loads. The test data for

specimen C3 is presented herein as representative of the specimens containing

3 in.? of flexural reinforcement.

The curves in Figure 5.3 illustrate that Branson’s model underestimates the
testing program deflection by approximately 10 percent with respect to
specimens containing 3 in.? of flexural reinforcement. In contrast to the
specimens containing 8 in.2 and 5 in.? of flexural reinforcement, the stiffness
calculated per Branson’s model is greater than the stiffness resisting the applied
service load. This is validated by the comparison of effective moment of inertia
values obtained from Branson’s model (Z,.pr4nson) to actual moment of inertia
values (/) (obtained experimentally) over a range of applied load values
(M/M,,) (Table 5.5).

The values in Table 5.5 reveal that Branson’s model overestimates moment
of inertia by approximately 8 percent at service load. The inability of Branson’s
model to accurately model lightly reinforced concrete members was also
observed by Fikry and Thomas (1998). Therefore, the performance of Branson’s
model with respect to its intended purpose (estimating effective moment of
inertia for the purpose of calculating reinforced concrete member deflection that
includes permanent deflection) is presented in section 5.2.3.

In Table 5.6 cracked moment of inertia values, obtained from Branson’s
model (when I, is substituted for 1) (/.,-sranson), are compared to cracked
moment of inertia values obtained from a transformed section analysis (Z,.1z).
The values shown reveal an approximate 11 percent underestimation of 7., if the
underestimated I, value is substituted for I, in Equation 5.1. In this case, if
Branson’s model is used to determine 7., from a field measured I, I, will be
conservatively underestimated.
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Figure 5.3 - Typical Load versus Deflection A = 3 in.2 (Specimen C3)

Table 5.5
Moment of Inertia Values A, = 3 in.? (C3)
M./M., leer (in.%) ly.aranson (In.*) % Difference
0.54 19300 51600 -167.4
1.08 16500 43400 -163.0
1.35 16300 28600 -75.5
1.43 16200 26100 -61.1
1.52 16100 24100 -49.7
1.60 16000 22500 40.6
1.68 16000 21200 -32.5
1.76 15900 20100 -26.4
1.84 15900 19200 -20.8
1.92 15800 18500 174
2.00 15800 17800 -12.7
2.08 15700 17300 -10.2
2.17 15600 16800 7.7

5.2.2 Branson Model Conclusions

The comparison of measured deflections to deflections obtained using the
Branson model revealed that an inaccurate /., value is obtained when I,
(obtained experimentally) is substituted into Branson’s model. In the instance of
members containing 8 in.” and 5 in.? of flexural reinforcement, this is most likely
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Table 5.6

Comparison of |, Values A, = 3 in.? (C3)
M.J/M ler.sranson (in.") l1r (in.*) % Difference
0.54 57700 13000 775
1.08 ; 13000 -
1.35 - 13000 ;
143 : 13000 :
152 1900 13000 584.2
1.60 4500 13000 188.9
1.68 6500 13000 -100.0
1.76 7900 13000 64.6
1.84 9100 13000 2.9
1.92 10000 13000 30.0
2.00 10800 13000 20.4
2.08 11300 13000 15.0
247 11700 13000 111

Note: (*) Model gives large, unrealistic results at loads close to M.

due to the fact that permanent deflections are included in the Branson model but
were not measured. In the case of 3 in.? of flexural reinforcement the error is more
likely due to the inherent inability of the Branson model to accurately model lightly
reinforced cross-sections. The sign and magnitude of the error is relative to the
amount of reinforcement in the member’s cross-section. In the instance of 8 in?
and 5 in? of flexural reinforcement, I, is unconservatively overestimated and in the
instance of 3 in? of flexural reinforcement ,, is conservatively underestimated.

The data presented in Tables 5.1 through 5.6 also reveals that the in-field test
load must be significantly larger than the cracking moment to avoid the large,
unrealistic behavior exhibited at low load levels, close to the cracking moment.

5.2.3 Total Deflection

As detailed in Chapter 2, numerous researchers have shown that Branson’s
model has inherent shortcomings (e.g., Fikry and Thomas 1998 and Al-Zaid et al.
1991). Therefore, the performance of the model, with respect to its intended pur-
pose (estimating effective moment of inertia for the purpose of calculating total
deflection) is presented. Typical load versus deflection plots are presented below
for each reinforcement ratio (Figures 5.4, 5.5, and 5.6). These plots are similar to
Figures 5.1, 5.2, and 5.3; the difference being, the permanent deflection experienced
by the member is shown in Figures 5.4, 5.5, and 5.6. The permanent deflection is
the deflection recorded after each load cycle was complete.

These plots (Figures 5.4, 5.5, & 5.6) show that Branson’s model provides a
reasonable estimate of service load deflection with respect to a reinforced concrete
specimen containing 8 in.? of flexural reinforcement, but as reinforcement ratio
decreases Branson’s model increasingly underestimates the deflection (overestimates
effective moment of inertia) of the member. As mentioned earlier, this discrepancy
at low levels of reinforcement was also observed by Fikry and Thomas (1998).
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The underestimation of member deflection is approximately 21 percent for members
containing 5 in.? of flexural reinforcement and 60 percent for members possessing
3 in?

The discrepancy between measured deflection (total deflection) at service load
and theoretical deflection obtained from Branson’s model for specimens containing
5 in.? and 3 in.? of flexural reinforcement (Figures 5.5 and 5.6) reveals that the
discrepancy observed in sections 5.2.1.2 and 5.2.1.3 (Figures 5.2 and 5.3), when
permanent deflection was not measured, is in-part caused by the inherent short-
comings associated with Branson’s model. Possible reasons for the discrepancies
observed in Figures 5.5 and 5.6 are discussed in the technical writings referenced in
Chapter 2 (Al-Zaid et al. 1991, Al-Shaikh and Al-Zaid 1993, Fikry and Thomas 1998,
Grossman 1981).

5.3 Alternative Effective Moment of Inertia Models

Since it first appeared in the ACI Building Code (1971), the accuracy of Branson’s
model has been a source of debate in both the design and academic communities.
As discussed in Chapter 2, numerous researchers have successfully shown the
inherent shortcomings of Branson’s model, and a few took the next step and
somehow improved or modified Branson’s model. In all cases, the respective
researchers were interested in the agreement between theoretical deflection and
experimental deflection (total deflection). Even though, the resulting models were
created to serve that purpose, their form allows them to be “calibrated,” making
them suitable as a component of the proposed analysis procedure.
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Particularly of interest are three studies, two of which were conducted by Al-
Zaid et al. (1991) and Al-Shaikh and Al-Zaid (1993) and bore two improved forms
of Branson’s model (Equation 1.1); and a third study that developed a new, effective
moment of inertia model from proven, concrete response theory (Fikry and Thomas
1998).

5.3.1 Modified Branson Model

Al-Zaid et al. (1991), and Al-Shaikh and Al-Zaid (1993) initially addressed the
discrepancy between experimental moment of inertia (that corresponding to total
deflection) and theoretical moment of inertia (obtained from Branson’s model) by
changing the cubic exponent in Branson’s model to a variable (m), and solving for it
experimentally. During the course of their research they observed that the exponent
(m) was a function of both reinforcement ratio and load configuration (i.e., cracked
length - the length over which a member’s cracking moment is exceeded by applied
moment).

The curves in Figures 5.1 through 5.3, which illustrate inconsistent flexural
behavior between T-beams differing only in the amount of flexural reinforcement in
their cross-sections, confirm that one exponent (m) cannot produce precise results
for all reinforcement ratios. The fact that the exponent (m) is a function of the
quantity of flexural reinforcement (Al-Shaikh and Al-Zaid, 1993) presents a
drawback in an in-field situation when the amount of flexural reinforcement is
unknown. In contrast to the findings drawn by Al-Zaid et al. (1991), data obtained
during this testing program reveals that load configuration (i.e., cracked length) has
an insignificant affect on the actual moment of inertia of a T-beam bridge girder.
The curves in Figure 5.7 illustrate the difference in moment magnitude along the
length of a generic T-beam test specimen when loaded to the same service load
moment by two different load configurations. One load configuration is that
implemented in the aforementioned testing program and described in Chapter 3. The
other is a uniform load configuration, which is the load configuration considered by
Branson during the development of Equation 1.1.

Labeled on Figure 5.7 is the difference in cracked length, dL.,, at each end of
the member (one-half L., in this case), a combined difference of approximately 3 ft
over the entire 28 ft span. In contrast to the relatively short (8.21 ft), rectangular
(9.5 in. by 8 in.) cross-sections tested by Al-Zaid et al. (1991), load configuration
has an insignificant effect on the longer, larger T-beam test specimens. Therefore,
in a situation involving an in-service T-beam, the primary parameter affecting the
exponent m is the quantity of flexural reinforcement contained in the member.

5.3.1.1 Procedure. A portion of the research conducted by Al-Zaid et al.
(1991), and Al-Shaikh and Al-Zaid (1993) focused on determining an exponent m
for a specific load configuration and/or reinforcement ratio. A similar operation is
performed with the T-beam test data to obtain an exponent m that replaces the
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cubic exponent in Branson’s model, allowing it to more accurately model the
cracked T-beam behavior observed during the testing program. First, the experi-
mental deflection and corresponding load data were substituted into the proper
elastic deflection relationship (Equation 5.3) (PCI 1999).

A=[kM, [(E1,)GI* -4a%) (53)
where
A = mid-span deflection
k = load configuration/end restraint constant (1/24 for test
configuration)
M, = applied load
E. = elastic modulus of concrete
I, = effective moment of inertia
! = member length
a = moment arm (which is equal to 1/2 [1 - center-to-center load

spacing])

An equation for the T-beam’s actual moment of inertia (/,.;) was then obtained by
rearranging Equation 5.3 to the form of Equation 5.4 where I, is replaced with
Iact-

L., =[kM, (EA )31 -4a®) 54
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where 1, is the experimental moment of inertia of the member and Acxp 1s the
experimental mid-span deflection during testing. The actual moment of inertia
was then substituted for the J, term in Equation 2.8 to obtain Equation 5.5.

I, =(MC,/Ma)’"*1g +[1-(M_, /M)"1*1, 5.5
where

m = experimentally determined exponent
I, = actual moment of inertia

I, = cracked moment of inertia

I, = gross moment of inertia
M, = applied moment
M., = cracking moment

i

i

Upon arrangement of the terms in Equation 5.5, the expression of the expo-
nent m can then be determined for a specific load configuration and/or reinforce-
ment ratio as follows:

m=log[(l,,—1,)/(I, ~1,)/log(M, /M,) (5.6)

5.3.1.2 Exponent m behavior. The behavior of the exponent m, with
respect to applied load, is evaluated by applying the procedure outlined in
section 5.3.1.1 to the test data. First, the behavior of m is evaluated over a
complete (zero-to-failure) load cycle, and then the focus turns to the behavior of
m over a typical service load cycle. This was accomplished by using the data
generated from testing specimen AS up to failure. Figure 5.8 shows a plot of m
versus the ratio of M,/M,, for specimen AS5. Note that this specimen was tested to
failure. In general, the behavior illustrated in Figure 5.8 is typical of the
exponent m behavior observed during the testing of all reinforced concrete
members by Al-Zaid et al. (1991) and Al-Shaikh and Al-Zaid (1993) and those
tested to failure herein. No values for m are given in Figure 5.8 to avoid later
confusion regarding the value of m, which is a function of reinforcement ratio.

In this figure, the curve reveals that the value of m is very sensitive at low
and high ratios of M,/M,, but tends to be constant otherwise. The low point of
the curve is around M,/M,, = 3.5. The service load moment used during the
testing program was approximately 3.1 times the cracking moment, therefore
allowing the constant, experimental value of m to be determined for each test
specimen. In the case of specimens containing 4, = 3 in.?, the M,/M,, ratio was
approximately 2.2, which is at the beginning of the constant region of m values.
The smaller M,/M,, was agreed upon during testing as to not approach the failure
strength of the 4, = 3 in.? test specimens.

The typical form of an exponent (m) versus M,/M,, plot generated by
applying four service load cycles to a cracked, T-beam test specimen
(specimen B8), as presented in Figure 5.9. The sensitive portion of the curve
(M/M,, < 1.5) is ignored leaving a curve that illustrates the approximately
constant value of m referred to in Figure 5.8.
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5.3.1.3 Determination of the Exponent m. A means of determining the
constant value of m, mentioned above, is developed with the aid of the m versus
applied load plots for each reinforcement ratio, thus presenting the exponent m as
a function of applied load. This is done by using curve fitting of the individual
(Cycle I, Cycle III, etc.) m versus M,/M,, curves with trend lines (as shown in
Appendix B). The individual trend lines were then averaged, to obtain one
M,/M., curve for each test specimen. The “best-fit” curves corresponding to each
test specimen are then combined with its peers (i.e., A8, B8, and C8) and aver-

aged to generate a M,/M,, curve for each reinforcement ratio. The three resulting
equations are:

For A, =8 in’:

m=-0.675(M,/M,) +527(M,/M,)* -14.0(M,/M_)+141 (5.7)
For A,= 5 in’%:

m=-1.06(M,/M,) +850(M,/ M) -23.3(M,/M,)+240 (5.8)
For A, =3 in%:

m=-396(M,/M,) +21.9(M,/M,_,)* -66.5(M,/ M,)+574 (5.9)

Note that the test data corresponding to specimen BS5 is ignored due to reasons
previously explained.

To obtain a value for the exponent m for use in the modified Branson model
a load ratio (corresponding to the testing program service load) is substituted into

Equations 5.7, 5.8, and 5.9. The resulting exponent (m) values are presented in
Table 5.7.

Table 5.7
Experimental Exponent m Values
A, (in.%) M,/M,, m
8 3.1 1.2
5 3.1 1.9
3 2.2 4.0

5.3.1.4 Branson and Modified Models Compared. The accuracy of a
“modified” Branson model that incorporates these experimentally determined
exponents is shown in Tables 5.8 through 5.10. The tables present values of /,
determined with the original form of Branson’s model (/,.sz4ns0n) (Equation 1.1)
and values of /, determined with the Al-Zaid et al. (1991) modified form of the
model (.. modyica”) (Equation 2.8). The accuracy of the models is represented by
the ratio of actual moment of inertia (/,.;) (experimentally obtained) to each theo-
retical moment of inertia. The table values are average values associated with the
same representative test specimen used to previously illustrate the accuracy of
Branson’s model. In each case, application of the experimentally determined
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exponent m forces the “modified” model to produce an effective moment of

inertia approximately equal to I, at service load. Therefore, data from only the
representative test specimen for each reinforcement quantity is reported to show

the improvement and to observe the model’s accuracy over the range of testing
program M,/M,, ratios.

Table 5.8

Theoretical Moment of Inertia Comparison A, = 8 in.? (specimen B8)

M./M., Lot (in.%) lo.oranson (in.") lact/le.srANSON I “modtrea(in ") lexpllemodified”
0.51 50700 51600 0.98 51600 0.98
1.02 39700 49800 0.80 50900 "~ 0.78
1.36 37100 35500 1.04 43400 0.86
1.53 35800 32300 1.11 40900 0.88
1.70 35000 30300 1.16 39000 0.90
1.87 34400 29000 1.19 37500 0.92
2.05 33800 28100 1.20 36200 0.93
2.21 33300 27400 1.22 35200 0.95
2.38 32800 26900 1.22 34300 0.96
2.56 32300 26500 1.22 33600 0.96
2.73 32000 26300 1.22 32900 0.97
2.90 31600 26000 1.22 32400 0.98
3.05 31400 25900 1.21 31900 0.98

Table 5.9
Theoretical Moment of Inertia Comparison A, = 5 in.2 (specimen C5)

Ma/ Mer Ial:t (iﬂ.‘) In-BRANSON (in-A) Iactl |e-BRANSON 'u-"modlﬂed”(in-4) 'axg! le-"modlﬂed"
0.51 30000 51600 0.58 51600 0.58
1.01 24600 50400 0.49 50800 0.48
1.35 23600 31800 0.74 37100 0.63
1.52 23000 27600 0.83 33200 0.69
1.69 22800 25100 0.91 30500 0.75
1.85 22700 23300 0.97 28400 0.80
2.02 22400 22100 1.01 26800 0.83
2.19 22300 21200 1.05 25600 0.87
2.36 22200 20600 1.08 24600 0.90
2.53 22100 20100 1.10 23800 0.93
2.70 22000 19800 1.11 23100 0.95
2.86 22000 19500 1.13 22600 0.97
3.02 22000 19300 1.14 22200 0.99

Table 5.10

Theoretical Moment of Inertia Comparison A, = 3 in.? (specimen C3)

M./M., lset (in.") lo.aranson (in.’) lactfle.BRANSON lo-modiniea(in.") lexp/lemodified
0.54 19300 51600 0.37 51600 0.37
1.08 16500 43400 0.38 41100 0.40
1.35 16300 28600 0.57 24500 0.66
1.43 16200 26100 0.62 22100 0.73
1.52 16100 24100 0.67 20300 0.79
1.60 16000 22500 0.71 19000 0.84
1.68 16000 21200 0.75 17900 0.89
1.76 15900 20100 0.79 17100 0.93
1.84 15900 19200 0.82 16400 0.97
1.92 15800 18500 0.86 15900 1.00
2.00 15800 17800 0.88 15400 1.02
2.08 15700 17300 0.91 15100 1.04
2.17 15600 16800 0.93 14800 1.06
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The values in Tables 5.8 through 5.10 reveal that using an appropriate
experimentally determined exponent m allows Al-Zaid et al. (1991) and
Al-Shaikh and Al-Zaid’s (1993) “modified” form of Branson’s model to more
accurately model the behavior of the cracked T-beam test specimens that contain
8inand 5 in. of flexural reinforcement. Conversely, in the case of specimens
containing 3 in.” of flexural reinforcement the modified model provides no
significant i improvement. The magnitude of the discrepancy remains the same,
only a change of sign occurs This is partly due to the consideration of only two
specimens containing 3 in.? of flexural reinforcement, which did not behave
similarly, thus resulting in a poor average for the exponent (m); and partly due to
the model’s form, which is inherently unable to accurately model reinforced
concrete members with low quantities of reinforcement (Fikry and Thomas
1998).

The I, values obtained from the experimental data were substituted into the
modified Branson model (Equation 5.5), utilizing the respective exponent m, to
obtain I.,. The subsequent I, values (I, “modified) ar€ compared to I, values
obtained per a transformed section analysis (Z.,.rz) in Tables 5.11 through 5.13.
The values in Tables 5.11 through 5.13 reveal that the modified Branson model
along with its respective exponent (m) produce reasonable estimates for /., in the
case of specimens containing 8 in.? and 5 in.? of flexural reinforcement. The
same is not true for specimens containing 3 in.? of flexural reinforcement for
reasons previously discussed.

Table 5.11
Cracked Moment of Inertia Comparison A, = 8 in.? (specimen B8)
MJ/M,, ler-modmed- (in.") ler.1r (in.%) % Difference

0.51 52300 24900 52.4
1.02 * 24900 :
1.36 4900 24900 -408.2
1.53 12400 24900 -100.8
1.70 16600 24900 -50.0
1.87 19200 24900 -29.7
2.05 20800 24900 -19.7
2.21 21900 24900 -13.7
2.38 22600 24900 -10.2
2.56 23100 24900 7.8
2.73 23700 24900 -5.1
2.90 23900 24900 4.2
3.05 24300 24900 2.5

Note: (*) Model gives large, unrealistic results at loads close to M....

5.3.1.5 Modified Branson Model Conclusions. It was shown that the
Al-Zaid et al. (1991) form of Branson’s model accurately models the behavior of
a cracked, reinforced concreter member whenever the proper exponent is utilized.
The exponent (m) is dependent on the reinforcement quantity though, an
unknown parameter. For the modified form of Branson’s model to be considered
as a component of the proposed analysis procedure, a value for m that can be
used in all field situations must be available.
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A survey of some in-service T-beam bridges, spanning approximately 30 to
50 ft, in the Virginia Department of Highways Salem District revealed it is

Table 5.12

Cracked Moment of Inertia Comparison A, = 5 in.? (specimen C5)

M./M,, lerrmodified” (iN.%) ler.7r (in.%) % Difference
0.51 59700 18000 69.8
1.01 * 18000 *
1.35 * 18000 *
1.52 * 18000 *
1.69 5900 18000 -205.1
1.85 9800 18000 -83.7
2.02 12100 18000 -48.8
2.19 13900 18000 -29.5
2.36 15100 18000 -19.2
2.53 16100 18000 -11.8
2.70 16800 18000 7.1
2.86 17400 18000 34
3.02 17900 18000 0.6

Note: (*) Model gives large, unrealistic results at loads close to M...

Table 5.13

Cracked Moment of Inertia Comparison A = 3 in.2 (specimen C3)
M./M., ler. modifieq (in.") ler.act {in.) % Difference
0.54 57700 13000 775
1.08 < 13000 w
1.35 w0 13000 )
1.43 - 13000 o
1,52 1900 13000 5842
1.60 4500 13000 188.9
1.68 6500 13000 -100.0
1.76 7900 13000 64.6
1.84 9100 13000 429
1.92 10000 13000 -30.0
2.00 10800 13000 204
2.08 11300 13000 15.0
2.17 11700 13000 11

Note: (*) Model gives large, unrealistic results at loads close to M.

reasonable to assume that a typical T-beam bridge girder contains more than

3 in.? of flexural reinforcement (better referred to in terms of reinforcement ratio
here, p =0.93). Therefore, the values associated with the specimens having a
reinforcement ratio of p = 0.93 can be ignored because it is unlikely a member
with such a low reinforcement ratio will be encountered in a real situation. The
low-end reinforcement ratio was chosen at the on-set of the testing program to
evaluate if selected effective moment of inertia models could distinguish between
the different reinforcement quantities over the range of 4; that allowed the most
member deflection (Figure 3.4) and return the proper value of I.,. As shown, this
is not the case unless the proper value for m is utilized.

Elimination of Equation 5.9 leaves the relationships for 4; = 5 in.> (Equa-
tion 5.8) and 4, = 8 in.2 (Equation 5.7). A conservative approach is to determine
which exponent produces a conservative estimation of I, for the other situation.
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C0n51denng the initial value of m (3), the conservative value is the exponent that
is produced by the 8 in.’relationship. This raises the question, does the exponent
m continue to decrease with higher reinforcement ratios or is the behavior
asymptotic to some value, a question that cannot be answered with the testing
program data. Therefore, based on the findings of this research and conservative
assumptions, it is recommended that a value of m = 1.2 be utilized in lieu of the
cubic exponent incorporated into Branson’s model when the modified Branson
model is utilized in the proposed analysis procedure.

5.3.2 Cracked Length Model

Al-Zaid et al. (1991) also developed an effective moment of inertia model
that inherently accounts for the observed affect that loading configuration has on
effective moment of inertia. The model (Equation 2.10) accounts for the effect
by using a form of Branson’s model written in terms of the cracked length and
the overall length of the member. The form of the model leaves the exponent
(m’) solely dependent on the reinforcement ratio.

5.3.2.1 Procedure. Generally, the values for m’ were calculated in the same
manner as the exponent (m) was previously calculated, but instead of substituting
I, into Equation 2.8, I, replaced the I, term in Equation 2.10 to obtain
Equation 5.10.

Ly =L, /L) *1, +[1-(L, /L)"]*I, (5.10)
where
I, = the actual moment of inertia
.» = cracked moment of inertia
I, = gross moment of inertia
m’ = experimentally determined exponent
L., = cracked length of the member

L = length of the member
Equation 5.10 can be rearranged to solve for the unknown exponent () as
follows,

m,=10g [(Ig —Iacr)/(lg _Icr)]/log(LcrL) (511)
The exponent (m’) can then be determined for each reinforcement ratio.

5.3.2.2 Exponent m’ Behavior. The behavior of the exponent m’, with
respect to applied load, is evaluated by applying the procedure outlined in sec-
tion 5.3.2.1, along with the changes of section 5.3.2.1, to the test data. First, the
behavior of m” is evaluated over a complete (zero-to-failure) load cycle, and then
the focus turns to the behavior of m’ over a typical service load cycle. This was
accomplished using the data generated from testing specimen AS5. Figure 5.10
shows a plot of m’ versus the ratio of M,/M,, for specimen A5. Note that this
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specimen was tested to failure and that no values for m’ are given in Figure 5.10 to
avoid later confusion regarding the value of m’, which is a function reinforcement

ratio.

FAILURE - (Concrete Crushing on Compression Face)

0.00 100 200 3g0 320 400 508 600
MaMer

Figure 5.10. Exponent m’versus Applied Load over a Complete Load Cycle
(Specimen A5)

The curve exhibits an apex at approximately M,/M,, = 3.2 and reveals that m’ is
sensitive at low and high ratios of M,/M,,, characteristics similar to the behavior of
exponent (m). Conversely, the m’ versus M,/M,, curve is concave down and
exhibits parabolic, rather than cubic behavior. The region of constant exponent
values observed with the exponent m data is less pronounced in this case due to the
parabolic behavior of the m’ data.

The typical form of an exponent m’ versus M,/M,, plot produced by the appli-
cation of four service load cycles to a T-beam test specimen (B8) is presented in
Figure 5.11 (Appendix C — m’ versus M,/M,, for all specimens). The sensitive
portion of the curve (M,/M,, < 1.0} is ignored leaving a curve that illustrates the
values of m’ between the cracking moment and the service load moment.

5.3.2.3 Determination of Exponent m’. The curve fitting procedure that was
applied to the exponent m data is similarly applied to the exponent m’ versus M,/M,,
plots to obtain a relationship for s’ that is a function of M,/M,, for each
reinforcement ratio. The three resulting relationships are:

For A, = 8 in’:

m'=-0.052 (M, /M_)*+0.420 (M ,/ M _)+0.021 (5.12)
For A, =5 in%

m’ =-0.014 (M, /M _,)*+0.182 (M, / M, )+0.03 (5.13)
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Figure 5.11. Typical m’versus Applied Load (Specimen B8)
For A, =3 in.’;

m'=-0.012 (M, /M) +0.095(M, /M, )+0.037 (5.14)

Note that the data associated with specimen BS5 is ignored once again due to the
malfunction of the data acquisition system. To obtain a value for the exponent
m’ for use in the “cracked” model, the appropriate load ratio (ratio corresponding
to testing program service load) is substituted into Equations 5.12, 5.13, and
5.14. The respective M,/M,, ratios and the resulting exponent () values are
presented in Table 5.14.

Table 5.14
Experimental m’Values
A (in.) MM, m’
8 3.1 0.82
5 341 0.46
3 2.2 0.11

5.3.2.4 Branson and Cracked Models Compared. The accuracy of the
cracked length form of Branson’s model that incorporates these experimentally
determined exponents is revealed in the values of Tables 5.15 through 5.17. The
tables list the values of /, obtained from the original form of Branson’s model
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Table 5.15

Theoretical Moment of Inertia Comparison A, = 8 in.? (specimen B8)

Mal Mcr Iact (in -‘) Ie-BRANSON (in -‘) Iact/ Ie-BRANSON Ie-"cracked"(in-‘) 'exg 'e-"cracked"
0.51 . 50700 51600 0.98 25800 1.96
1.02 39700 49800 0.80 45200 0.88
1.36 37100 35500 1.04 39800 0.93
1.53 35800 32300 1.1 38000 0.94
1.70 35000 30300 1.16 36700 0.96
1.87 34400 29000 1.19 35600 0.97
2.05 33800 28100 1.20 34600 0.97
2.21 33300 27400 1.22 33900 0.98
2.38 32800 26900 1.22 33200 0.99
2.56 32300 26500 1.22 32600 0.99
2.73 32000 26300 1.22 32200 1.00
2.90 31600 26000 1.22 31700 1.00
3.05 31400 25900 1.21 31400 1.00

Table 5.16

Theoretical Moment of Inertia Comparison A, = 5 in.? (specimen C5)

MaIMcr lact (in-‘) IQ-BRANSON (il’l.‘) lactl Ia-BRANSON 'e-“cracked"(in-4) lexd le-"cracked”
0.51 30000 51600 0.58 18300 1.64
1.01 24600 50400 0.49 34900 0.70
1.35 23600 31800 0.74 29000 0.81
1.52 23000 27600 0.83 27400 0.84
1.69 22800 25100 0.91 26300 0.87
1.85 22700 23300 0.97 25400 0.89
2.02 22400 22100 1.01 24600 0.91
2.19 22300 21200 1.05 24100 0.93
2.36 22200 20600 1.08 23600 0.94
2.53 22100 20100 1.10 23100 0.95
2.70 22000 19800 1.11 22800 0.97
2.86 22000 19500 1.13 22500 0.98
3.02 22000 19300 1.14 22200 0.99

Table 5.17
Theoretical Moment of Inertia Comparison A; = 3 in.? (specimen C3)

Mal Mcr Iact (in-4) Ie-BRANSON (in-‘) Iactl |e-BRANSON Ie—"cracked”(i“-4) Inxe 'e-“cracknd"
0.54 19300 51600 0.37 13700 1.41
1.08 16500 43400 0.38 19500 0.85
1.35 16300 28600 0.57 17500 0.93
1.43 16200 26100 0.62 17100 0.95
1.52 16100 24100 0.67 16800 0.96
1.60 16000 22500 0.71 16500 0.97
1.68 16000 21200 0.75 16300 0.98
1.76 15800 20100 0.79 16100 0.99
1.84 15900 19200 0.82 15900 1.00
1.92 15800 18500 0.86 15700 1.00
2.00 15800 17800 0.88 15600 1.01
2.08 15700 17300 0.91 15500 1.01
217 15600 16800 0.93 15400 1.02
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(Ze-sranson) (Equation 1.1) and values of I, determined with the cracked length
form of the model (L. crackea~) (Equation 2.10). The accuracy of the models is
represented by the ratio of actual moment of inertia to each theoretical moment of
inertia. The table values are average values associated with the same representa-
tive test data used previously to evaluate the accuracy of both the Branson model
and the “modified” Branson modcl. As in the case of the “modified” Branson
model, the application of the experimentally determined exponent m’ forces the
cracked model to produce an effective moment of inertia approximately equal to
Iaci at service load. Therefore, the data from only the representative test specimen
for each quantity of flexural reinforcement is reported to show the improvement
and to observe the model’s accuracy over the range of testing program M,/M,,
ratios.

The values of Tables 5.15 through 5.17 reveal that use of an appropriate m’
value allows the cracked length form of Branson’s model to accurately model the
behavior of the cracked, T-beam test specimens. Comparison of Tables 5.15
through 5.17 to their counterpart in the exponent m discussion (Tables 5.8
through 5.10) reveals that the cracked length model is consistently more accurate
over a larger range of M,/M,, values. This behavior may be attributed to the
parabolic behavior of the exponent m’. Over the range of M,/M,, values
approaching service load, the rate of change is less in the case of the m’ data due
to its parabolic rather than cubic behavior, for this reason the cracked length
model is more accurate over a larger range of applied load values.

The I, values obtained during the experimental program are now substituted
into the cracked length model, utilizing the respective exponent m’, to obtain .
The subsequent 7, values (I.,. crackes”) are compared to I, values obtained pera
transformed section analysis (I.,.7z) in Tables 5.18 through 5.20. The values in
Tables 5.18 through 5.20 reveal that the cracked length model along with its
respective exponent (m°) produce reasonable estimates for ., in the case of all
three reinforcement quantities.

Table 5.18
Cracked Moment of Inertia Comparison A, = 8 in.? (specimen B8)
M./M., ler- crackee (iN.%) ler.1r (in.%) % Difference

0.51 50700 24900 50.9
1.02 * 24900 *
1.36 19000 24900 -31.1
1.53 20700 24900 -20.3
1.70 22100 24900 -12.7
1.87 23100 24900 -7.8
2.05 23700 243800 -5.1
2.21 24200 24900 -2.9
2.38 24400 24900 -2.0
2.56 24500 24900 -1.6
2.73 24800 24900 -0.4
2.90 24800 24900 -0.4
3.05 25000 24900 0.4

Note: (*) Model gives large, unrealistic results at loads close to M.
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Table 5.19
Cracked Moment of Inertia Comparison A, = 5 in.? (specimen C5)

M./M,, bercrackeqr {iN.") lerre (in.%) % Difference
0.51 29900 18000 39.8
1.01 > 18000 *
1.35 10100 18000 -78
1.52 12000 18000 -50.0
1.69 13500 18000 -33.3
1.85 14700 18000 -22.4
2.02 15300 18000 -17.6
2.19 16000 18000 -12.5
2.36 16500 18000 . -9.1
2.53 16900 18000 6.5
2.70 17200 18000 4.7
2.86 17500 18000 2.9
3.02 17800 18000 -1.1

Note: (*) Model gives large, unrealistic results at loads close to Mcr.

Table 5.20 »
Cracked Moment of Inertia Comparison A, = 3 in.2 (specimen C3)
M./M,, lereracked” (iN.") ler7r (in.%) % Difference
0.54 18800 13000 30.9
1.08 * 13000 *
1.35 11800 13000 -10.2
1.43 12100 13000 74
1.52 12400 13000 4.8
1.60 12600 13000 -3.2
1.68 12800 13000 -1.6
1.76 12900 13000 0.8
1.84 13100 13000 0.8
1.92 13200 13000 15
2.00 13300 13000 2.3
2.08 13300 13000 23
2.17 13400 13000 3.0

Note: (*) Model gives large, unrealistic results at loads close to M.

5.3.2.5 Cracked Length Model Conclusions. The values in Tables 5.18
through 5.20 reveal that the cracked length form of the Branson model accurately
models the behavior of the cracked, T-beam test specimens given that the appro-
priate m’ value is used. Unfortunately, the exponent 7’ (just like the exponent
m) is dependent on the member’s reinforcement ratio.

The same conclusions drawn in the case of the exponent m discussion apply
in this situation. The best option is to ignore the 4, =3 in.” relationship, (Equa-
tion 5.14) for the reasons previously discussed, and determine between the 4, =
5 in.? (Equation 5.13) and 4, = 8 in.? (Equation 5.12) which relationship produces
a conservative estimation of I, for the other scenario. Once again, the conserva-
tive value for m’ is produced by the 4, = 8 in” relationship (Equation 5.12).
Therefore, based on the findings of this research and conservative assumptions, it
is recommended that a value m’ = 0.88 be assumed when the cracked model is
utilized as a component of the proposed analysis procedure.
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5.3.3 Fikry and Thomas Model

5.3.3.1 General. Another effective moment of inertia model examined for its
accuracy in the modeling the behavior of a reinforced concrete T-beam was the
model developed by Fikry and Thomas (Fikry and Thomas 1998). Their
approximation was developed with the goal of providing a more accurately
account for non-uniform load configurations and variations in reinforcement,
which represent stumbling blocks for existing models (Fikry and Thomas 1998).
Another goal of the model was to eliminate the cumbersome Z, calculation
associated with Branson’s model and its spin-offs.

Similar to the previously discussed models, the Fikry and Thomas model was
derived to calculate the effective moment of inertia associated with total
deflection (the deflection that includes permanent deflection) experienced by a
reinforced concrete member. Theoretical deflection values calculated with Fikry
and Thomas’s model were compared to the deflection values obtained during the
testing program detailed in Chapter 3. An effort was made to determine if a pat-
tern existed between the theoretical values and the experimental values (void of
permanent deflection) that could be calibrated to create a model that estimated
the effective moment of inertia of a cracked T-beam girder subjected to a
simulated tandem axle load configuration.

5.3.3.2 Analysis. The model’s performance was compared to experimental
data in the form of load versus deflection plots. The load versus deflection curve
obtained with the aid of the Fikry and Thomas model was added to the
experimental load versus deflection plots that were previously presented
(Figures 5.1 through 5.3). Each plot represents the typical load versus deflection
behavior of the stated reinforcement quantity (Figures 5.12 through 5.14).

These curves reveal that the Fikry and Thomas model yields similar results as
the Branson model for all three reinforcement ratios. The desired result is for the
model to accurately model the behavior of a previously cracked reinforced con-
crete T-beam subjected to a tandem axle truck load. It is obvious that the model
does not achieve the desired result, mostly due to the model’s allowance for the
inelastic effects of tensile cracking of the concrete. A breakdown of the mechan-
ics of the Fikry and Thomas model reveals that allowance for permanent
deflection lies in the exponent ¢. The value of ¢ is determined from either
Equation 5.15 or 5.16.

$=-(M,I M, )L, /L)p>1% (5.15)
$g=—(M,IM_,)L,/L)y<1% (5.16)
where
M, = applied moment
M., = cracking moment
L., = cracked length
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Figure 5.14. Typical Load versus Live-load Deflection A;=3 in.2 (Specimen C3)

L = corresponds to the member length
p = reinforcement ratio

These relationships were determined empirically from over 340 laboratory
tests (Fikry and Thomas 1998). A similar empirical procedure as that used to
calculate the exponents of Equation 2.8 and Equation 2.10 was applied to obtain
the experimental value of @, and the expression can be stated as:

bop =In Iy - 1,,..) In (I, ~1,,) (5.17)
where
I, = experimental moment of inertia

I... = cracked moment of inertia approximation
gross moment of inertia

o
il

Similar to the behavior of the exponent m calculated by Equation 2.9, the

behavior of ¢,,, when plotted versus M,/M,, produces a curve best modeled by a
cubic relationship.

An examination of the relationship for ¢ when p>1 (Equation 5.16), typical
for a T-beam bridge girder, reveals the reinforcement ratio parameter which is
unknown during the analysis of an in-service bridge enables the model to be of
service in the proposed analysis procedure. The only helpful information is the
cubic curve in terms of M,/M,, that was produced by plotting ¢4 versus applied
load. The cubic relationship could be used to calculate a ¢ so that the model
could be utilized as part of the proposed analysis procedure, but that is no better
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than the options produced from the analysis of the first two models. Beyond that,
determining the quantity of steel from the /.. model (Equation 2.14) is made
difficult by the constants o and P that are functions of the unknown
reinforcement ratio. For these reasons the Fikry and Thomas model is discussed
no further.
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6 Conclusions and
Recommendations

6.1 General

The U.S. Army’s maneuverability is limited during missions in foreign lands
because the load capacity of in-service bridges is unknown and in some instances
difficult to estimate. The bridge type that poses the greatest difficulty to field
engineers is the cast-in-place, reinforced concrete bridge, more commonly known
as the T-beam bridge. The products of this report represent an effort to develop a
more accurate capacity analysis procedure than the currently available for this
type of bridges. Specifically, the goal of this report was to determine an effective
moment of inertia model to accurately predict the behavior of an in-service, rein-
forced concrete T-beam member subjected to a tandem axle load configuration.

Personnel from the U.S. Army Engineer Research and Development Center
(ERDC) and Virginia Tech collaborated in the development of a laboratory-
testing program that subjected full-scale, T-beam test specimens to a simulated
tandem-axle load configuration. The mid-span deflection and corresponding load
values obtained from this testing program were used to evaluate the performance
of selected, effective moment of inertia models obtained during a literature
review, conducted as part of this research study. The models were evaluated on
their ability to return an accurate, cracked moment of inertia value given the
actual moment of inertia of an in-service, T-beam bridge girder.

An effective moment of inertia model to accurately predict the behavior of a
cracked, reinforced concrete T-beam is a key component in the accuracy of any
rapid load-capacity evaluation procedure. A methodology for this purpose is cur-
rently under development at the ERDC for the rapid estimation of a T-beam
bridge load capacity. The evaluation of various effective moment of inertia
models revealed that, in general, existing models are derived to calculate an
effective moment of inertia that corresponds to the service load deflection a
member experiences plus the permanent deflection a member sustains due to the
inelastic effects of cracking. This poses a problem since an in-service bridge
possesses an unknown amount of permanent deflection. The model that is
utilized in the proposed capacity analysis procedure must be able to return a
cracked moment of inertia value that corresponds to the service load deflection
only.
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Two effective moment of inertia models, the first one developed by Al-Zaid
et al., 1991 (as given by Equation 2.8), and the second one by Al-Shaikh and
Al-Zaid, 1993 (as given by Equation 2.10), were found to reasonable model the
behavior of a cracked reinforced concrete T-beam. The accuracy of both models
depends on the exponents (m and m’ respectively) incorporated into the models.
The testing program data confirms the behavior observed by Al-Zaid et al. (1991)
and Al-Shaikh and Al-Zaid (1993) that both exponents are a function of the
quantity of flexural reinforcement in the member’s cross-section, which most
typically represents the unknown parameter in an in-service T-beam bridge
girder.

The testing program data provided an expression for both exponents in terms
of applied load (M,/M,,) for each reinforcement quantity, a total of six expres-
sions. The two expressions representing members with a reinforcement ratio of
p = 0.93 were eliminated, due to reasons explained, leaving four expressions; two
expressions representing members with 5 in.” of flexural reinforcement (or a rein-
forcement ratio of p = 1.60) and two expressions representing members with
8 in.? of flexural reinforcement (or a reinforcement ratio of p = 2.66). The
expressions that yielded a conservative estimate of I, were found to be those
corresponding to a reinforcement ratio of p = 2.66, which yields the exponents
values of m = 1.2 and m’ = 0.82 under service loading. The quantity of flexural
reinforcement is estimated (As-ESTIMATE) for each T-beam test specimen in
Tables 6.1 and 6.2 by using either the “modified” model (Equation 2.8) or the
“cracked” model (Equation 2.10) along with their respective exponent.

Table 6.1
Modified Model Reinforcement Estimate
Specimen Ao pesicn (in-z) M. Acxpermenta{in.) bact (in.‘) le-mopiFiED (iﬂ-4) AsesTimate (iﬂ-z)

A8 8.0 4112 0.4072 27614 19491 6.9
B8 8.0 4112 0.3529 30980 23666 9.4
C8 8.0 4112 0.3540 29472 20993 8.9
A5 5.0 4112 0.4985 22556 12730 3.8
B5 5.0 4112 0.5327 19401 6857 1.8
C5 5.0 4112 0.4964 21796 11030 . 3.4
A3 3.0 No Data No Data No Data No Data No Data
B3 3.0 2760 0.5249 13980 -13604 -5.3
C3 3.0 2760 0.5056 15361 -8314 -3.1

Table 6.2

Cracked Model Reinforcement Estimate

Specimen A< pesicn (iﬂ-z) M, Aexperiventa(in.) lact ('n-4) lecrackep (in-‘) AsgsTimae !'ﬂ-zl

A8 8.0 4112 0.4072 27614 20853 7.6
B8 8.0 4112 0.3529 30980 24948 10.1
C8 8.0 4112 0.3540 29472 22576 9.7
A5 5.0 4112 0.4985 22556 14377 4.5
B5 5.0 4112 0.5327 19401 10569 3.5
C5 5.0 4112 0.4964 21796 12944 4.2
A3 3.0 No Data No Data No Data No Data No Data
B3 3.0 2760 0.5249 13980 -3676 -1.8
C3 3.0 2760 0.5056 15361 -1946 -1.1
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The values presented in Table 6.1 and 6.2 show that for specimens with 8 in.2
of flexural reinforcement (or p = 2.66) both models give a reasonable estimate,
but is more frequently not conservative rather than conservative. As expected,
both models consistently provide a conservative estimate of flexural
reinforcement for members with a p = 1.60. And in the case of members with a
p = 0.93 the chosen exponents cause the models to predict a negative
reinforcement for the lightly reinforced members.

The aforementioned testing program was not conducive in determining,
which of the effective moment of inertia models is more accurate as a component
of the proposed T-beam bridge capacity analysis. Therefore, it is recommended
that both models be evaluated for their accuracy during actual full-scale field-
testing of these types of bridges.

6.2 Field Test Recommendations

The following recommendations are made regarding full-scale T-beam
bridge testing or any field implementation of the proposed capacity analysis
procedure. First, a thorough visual evaluation of the structure is recommended to
note any excessive deterioration or other material abnormalities. The findings of
the visual evaluation in conjunction with intelligence, regarding local materials,
and sound engineering judgment allows the field engineer to make an initial
assessment of the bridge’s structural integrity. It is also recommended that the
structure be evaluated with a sonar device to determine the approximate location
of the reinforcement in the member’s cross-section. Knowledge of the flexural
reinforcement’s location eliminates assuming an effective depth. Aftera
satisfactory condition assessment, it is recommended that the structure in
question be pre-loaded before data acquisition commences to eliminate any errors
due to tensile cracking of the concrete. The structure should be loaded to a
service load moment approximately three times the member’s cracking moment.
The testing program data reveals that for specimens with reinforcement ratios of
p=2.66 and p = 1.60 this load magnitude is significantly less than the member’s
ultimate capacity, however, 3*M,, approaches the capacity of the members with a
reinforcement ratio of p =0.93. As mentioned in Chapter 5 it is reasonable to

assume that T-beam bridge girders have a reinforcement ratio greater than p =
0.93.

Finally, it is assumed that an accurate method of measurement is utilized to
obtain member deflection and that an accurate wheel-load distribution theory is

employed. These two factors are critical to the accuracy of the proposed analysis
procedure.

6.3 Recommendations for Future Testing

If, in future, any controlled testing is conducted as an extension or
supplement to the testing program described herein consider the following

Chapter 6 Conclusions and Recommendations




recommendations. During the testing procedure that applies a prescribed service
load to a test specimen, overload the member and then re-apply the service load
again to determine the effect that overloading has on the flexural behavior of the
member. It is also recommended that specimens with larger amounts of
reinforcement than those tested herein be incorporated to evaluate the behavior of
the exponents corresponding to effective moment of inertia models developed by
Al-Zaid et al. (1991) and Al-Shaikh and Al-Zaid (1993). Specifically, to
determine if the exponent values become asymptotic to some value as the
reinforcement quantity increases. Also, a larger number of test specimens and a
broader range of reinforcement quantities are needed to aid in the development of
relationships that facilitate the determination of the exponent values.
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